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We report the first experimental results on our high-power continuous-wave (CW) multi-
quantum-well amplifiers operating in 1550 nm range over a wide temperature span. Devices 
are compatible with active passive integration on an InP foundry platform. CW total output 
power of 100 mW at room temperature is recorded.  
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INTRODUCTION 

Photonic integrated circuits’ rapid market growth requires mature and reliable components fabricated with 
standardized industrial integration processes [1][2]. High-power devices at 1550 nm are the key components that 
find application in various modern systems, including lidar, telecommunication, and spectroscopy [3][4]. In this 
paper we present preliminary measurements and optical simulations of multi-quantum-well semiconductor optical 
amplifiers (SOA's) processed within SMART Photonics’ InP foundry technology platform. The devices are designed 
for active-passive integration with other building blocks that are available within existing process design kits (PDKs). 

DEVICE FABRICATION AND DESIGN 

A general overview of the layer stack is presented in Fig. 1a. The designed layer stack is grown by metalorganic 
chemical vapor deposition (MOCVD) epitaxy. The stack is grown on an n-type InP substrate with a Q1.25 guiding 
layer positioned below an n-InP spacer layer, graded index separate confinement InGaAsP layers, and the quantum-
well layer stack. The active region of the device is composed of compressively strained quantum wells that are 
separated with tensile strained barriers, followed by P-InP cladding and a P-InGaAs contact layer. A ridge structure 
is defined by lithography, followed by dry and wet etching. After wafer-thinning to 150 µm, devices are cleaved.  

Offset quantum wells are utilized in the device design to lower the confinement factor and consequently increase 
the saturation output power of the semiconductor optical amplifier [5]. In Fig. 1b optical simulations of confinement 
factor (Γ) vs. thickness of the n-InP spacer layer results are presented. In the layer stack design, 100 nm of InP is 
chosen corresponding to ~1.8% of Γ in the active device region. Optical simulations of the ridge etch depth and 
width were performed to assure single-mode operation. 

 
Fig. 1. Schematic overview of the layer stack (a) and (b) simulated optical confinement factor vs thickness of InP layer above 

optical waveguide core Q1.25. 

RESULTS AND DISCUSSION 

Firstly, Fabry Pérot (FP) lasers are characterised. Investigated devices were measured under continuous-wave (CW) 
and pulsed-mode operation. Cleaved and uncoated bars were directly placed in vacuum contact with the n-contact 
side on a copper mount, which was temperature-controlled by a thermoelectric cooler on top of a water-cooled 
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heat sink. The output power is measured by collecting the output light an integrating sphere. The optical spectrum 
is measured using a cleaved single mode fiber and an optical spectrum analyser (OSA). Light-current and voltage-
current measurements were performed as a function of temperature varying from 20 °C up to 50°C as long-
wavelength InGaAsP devices are known to be strongly temperature-dependent [6]. 

The output power characteristics are presented in Fig. 2a, recorded under CW (solid-lines) and pulsed-mode 
(dashed-lines) operation, respectively. The maximum CW total output power (of both facets) of 100 mW is recorded 
for a device length of 2000 µm and ridge width of 4 µm at room temperature, with 86 mA of threshold current (Ith). 
Based on measured output power levels, the saturation power of an SOA should be higher due to higher facet 
reflectivity. The thermal roll-off of the output power is clearly visible. Additional power loss due to heat under CW 
operation shows at least 15% lower output powers at the same temperature point in comparison to pulsed-mode 
operation. Threshold current and threshold current density (Jthe) increase over temperatures is depicted in Fig. 2b. 
The value of transparency threshold current density derived from linear fit of Jth and inverse cavity length is 
estimated to be 716 A/cm2.  

 
Fig. 2. (a) Measured light-current characteristics over temperature range between 20°C and 50°C, under CW operation (solid 
lines), pulsed-mode operation (dashed-lines) for the device length = 2000 µm and ridge width = 4 µm.  (b) Recorded threshold 

current (Ith, left axis) and threshold current densities (Jth, right axis) vs. temperature.  

Characteristic temperature measurements are presented in Fig. 3a and corresponding wall-plug efficiency in Fig. 
3b. Recorded T0 value of 68.5 K corresponds well with reported values in the literature [6], but it also suggests 
further improvements in thermal management are required.  

 
Fig. 3. (a) Characteristic temperature (T0) measurements and (b) measured characteristics of I-V, LI-V, and wall-plug efficiency 

at 20 °C and 30 °C. Device length = 2000 µm and ridge width = 4 µm. 

We used an optical spectrum analyzer (OSA) to record the optical emission spectra operating around 1550nm. In 
Fig. 4, the optical spectra of the device are presented measured at 20 °C and 30 °C. The thermal red-shift of the 
wavelength emission is about 0.5 nm/K.  
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Fig. 4. Recorded optical spectrum at 20 °C for the device length of 2000 µm and 4 µm of ridge width.  

SUMMARY 

We have presented experimental measurement results of FP lasers fabricated on our InP foundry platform 
compatible with active-passive integration. Proposed devices show capability of >100 mW of total output power 
under CW operation and integration of SOAs with saturation powers at higher power levels due to higher facet 
reflectivity. Further analysis of SOAs using anti-reflective coated devices is planned. 

As expected, strong temperature-dependent effects reducing the performance are observed. These influences are 
also confirmed in T0 measurements, which suggest further improvements in thermal optimization are required to 
lower the thermal sensitivity of the devices. Introduction of Al-based Quantum wells will further improve the 
temperature behaviour. 
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