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We introduce a reinforcement learning-based method for solving the pixel-discrete inverse-
design problem. The approach is capable of producing highly efficient, yet compact photonic 
circuit components of any desired linear opPcal funcPonality. We apply the algorithm to 
design a nanophotonic waveguide-mode converter (TE00 —> TE20) with a conversion 
efficiency of more than 85% and compact footprint of only a few vacuum wavelengths.  
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INTRODUCTION 

The complexity of photonic integrated circuits is increasing steadily as op&cal func&onali&es are replacing 
electronic integrated circuits and open new informa&on processing capabili&es, e.g. in quantum photonics. To 
sustain the growth of nanophotonic applica&ons, novel device func&onali&es and compact footprints will be 
required. Currently, photonic integrated circuit components are predominantly designed following a boZom-up 
approach, where the designer aims to exploit intui&ve physical effects in combina&on with brute-force methods 
for device op&miza&on purposes. The layout for a nanophotonic waveguide mode converter, for instance, would 
be based on evanescent wave coupling and hybrid mode effec&ve refrac&ve index matching [1]. In consequence, 
the resul&ng devices suffer from large footprints and are limited in the number of possible func&onali&es as 
complex phenomena, such as mul&-wave-interference effects cannot be considered, because they are not 
accessible by physical intui&on. Consequently, the overwhelming part of the vast design space that is available 
with modern nanofabrica&on techniques, in par&cular those featuring sub-wavelength dimensions, is not 
accessible. This method is opposed by top-down approaches, where the device is seen as a pixel-discre&zed black-
box, which is the subject of an op&miza&on problem where known inputs and desired outputs are defined as 
boundary condi&ons. Here, the limita&ons men&oned above do not exist and – given a suitable computa&onal 
rou&ne – complex devices with sub-wavelength features may be found that realize previously inaccessible 
func&onali&es and smaller device footprints [2]. 

Generally, photonic black-box op&miza&on problems are of non-convex nature. Thus, following inverse-design 
approaches that rely on gradient techniques to produce efficient device layouts on computa&onally feasible 
&mescales is not a trivial task. Previously, numerous computa&onal methods employing convex op&miza&on or 
direct search methods have been demonstrated. All of them suffer from drawbacks such as exponen&al run&me 
scaling with increasing design space, solu&ons featuring con&nuous permidvity distribu&ons that cannot be 
produced with common nanofabrica&on methods, or failure to consider stochas&c processes due to their 
dependency on calculated gradient fields [3]. 

In this work we show how to phrase the nanophotonic black-box op&miza&on problem as a reinforcement 
learning (RL) applica&on. Our method overcomes previous limita&ons by leveraging a distributed and highly 
parallel computa&onal architecture, showing stable learning behavior that scales well with increasing design space 
dimensionality. The direct applica&on of general reward-based reinforcement learning algorithms enables us to 
op&mize any pixel-discrete nanophotonic device accessible by electromagne&c simula&ons. We can manipulate 
the dataflow in different stages of the algorithm, allowing us to implement arbitrary geometry constraints, e.g. for 
observing limita&ons imposed by nanofabrica&on capabili&es. 
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METHOD AND APPLICATION 

Reinforcement learning is a biology-inspired domain of ar&ficial intelligence where an autonomously ac&ng en&ty 
referred to as the agent explores an environment by taking a series of ac&ons. These ac&ons change the state of 
the environment, and a reward is reported back to the agent. The reward is a measure for the improvement in 
device performance achieved by the ac&on, such that an op&mal behavior of the agent can be obtained by 
maximizing the cumula&ve reward following a policy, understood as a mapping from states to ac&ons. Fig. 1 shows 
how this concept is applied to the pixel-discrete nanophotonic inverse-design problem. The device shown on the 
leF represents the environment, where we define the state to be the two-dimensional pixel-configura&on 
encoding the presence of material or air as logic values ‚1‘ or ‚0‘, respec&vely. We refer to this representa&on as 
the „raw state“, which is further processed in the policy-determining convolu&onal neural network (CNN) and fully 
connected layers (FC). To suppress the common problem of reward-hacking through repe&&ve behavior, we 
combine the network’s output with the ini&al raw state using a specifically tailored skip connec&on, which 
bypasses the convolu&onal processing layers. Finally, a soF-max func&on is applied to the output to determine the 
next ac&on from the corresponding probability distribu&on, i.e. the coordinates of a pixel which is to be flipped 
from material to air or vice versa. To calculate the associated reward, the device performance is evaluated under 
considera&on of the surrounding waveguide geometry and involved input- and output-modes using a customized 
high-throughput Finite Difference Frequency Domain (FDFD) solver. The results of the simula&on are used to 
calculate a figure of merit, which in turn is used as an input for the reward calcula&on, while both func&ons can be 
specified by the user in order to account for special requirements of specific devices. The resul&ng tuple of state, 
ac&on and reward is subsequently processed by a reinforcement learning algorithm adjus&ng the weights in the 
neural network to op&mize the current policy. 

The workflow depicted in Fig. 1 is implemented in an isolated instance, which we refer to as a „worker“. Mul&ple 
workers can be employed on remote machines, communica&ng with a central instance [4], thus gran&ng 
scalability of our approach ranging from single desktop-PCs to whole HPC-clusters. Mul&ple levels of parallelism 
here enable us to op&mize devices in large and complex environments.  
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Fig. 1. Data-flow in a RL-worker. The device shown on the leF is the numerical representaGon of the 
opGmizaGon problem as specified by parameters such as pixel-size, device-dimensions and the waveguide-
modes under consideraGon. The agent (orange box) interacts with the environment while the acGons and 

observaGons are processed and possibly altered in between.
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In Fig. 2 we show an exemplary applica&on of our method on a nanophotonic waveguide-mode converter, which is 
supposed to convert the fundamental quasi-transverse electric (TE00) to the higher order quasi-TE20 waveguide-
mode at a wavelength of 775 nm. We configure the device to have a length of 3.2 µm and a width of 1.6 µm 
discre&zed in 80 and 40 pixels, respec&vely, realized in 200 nm thin silicon-nitride-on-insulator. The pixels are 
quadra&c with a side-length of 40 nm and the op&miza&on, including all involved simula&ons, are conducted in full 
3D. Through one of the design-constraint-layers depicted in Fig. 1, namely D3, we enforce a symmetric layout. The 
final device is shown in Fig. 2 (leF), while the corresponding evolu&on of the maximum figure of merit, as 
calculated by 8 parallel workers, are shown in Fig. 2 (right). The learning behavior is strong, stable and 
reproducible, resul&ng in successful mode conversion with an efficiency of 85.5% (-0.68 dB) and low crosstalk into 
the TE00-mode of 2.8% (-15.53 dB). Our implementa&on is sufficiently versa&le to allow for biasing the results in 
order obey fabrica&on constraints, if necessary.  

CONCLUSION AND OUTLOOK 

In this work, we apply RL, as one of the most promising approaches in ar&ficial intelligence, to nanophotonic 
inverse-design. Our method is highly flexible as it allows for the op&miza&on of any device accessible by 
electromagne&c simula&ons. Theore&cal advances in the field of reinforcement learning will be directly applicable 
to this approach and thus we expect to immediately benefit from recent findings such as sophis&cated approaches 
to handle delayed- or sparse-reward environments or novel and more accurate neural-network architectures to 
derive the current state-ac&on-policy.  
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Fig. 2. OpGmizaGon of a nanophotonic waveguide-mode converter. The final device with the electric field overlay (Ey-
component, perpendicular to the direcGon of propagaGon) excited by a distribuGon corresponding to the fundamental 

waveguide-mode is depicted on the leF. Dark blue and white background indicate the presence of air and material, 
respecGvely. The figure of merit, which is representaGve of the conversion efficiency, ploRed against the total number of 

steps taken by all workers is shown on the right.
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