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Nonlocal interactions of plasmonic nanostructures are currently being intensively investigated. It 
is generally accepted that nonlocal interactions are most pronounced on metallic structures with 
nanometre unit sizes and affect the shape of spectral functions of characterizing quantities in the 
resonance region. Since the numerical analysis of nonlocal phenomena is quite complicated in 
general. Clearly, it is advantageous to use it for the analysis of geometrically more complex 
structures. However, for some structures with simpler morphology, it is possible and beneficial to 
find (quasi)analytical solutions which can then be applied to build semi-analytical approaches for 
the analysis of more complex structures. Therefore, this contribution is focused on the analytical 
description of nonlocal manifestations of planar metal layers using the hydrodynamic model. Our 
aim is to present here the possibilities of constructing an efficient nonlocal model for 1D metal 
layers. 
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INTRODUCTION 

So-called non-local phenomena in metallic structures 
are currently being intensively investigated. These 
phenomena are more pronounced on metal structures 
whose at least one dimension is usually nanometer-
sized [1]. In very general terms, the nonlocal medium 
disrupts the relationship between the electric field 
vector and the electric induction vector in the form 
𝑫𝑫(𝑟𝑟,𝜔𝜔) = 𝜀𝜀(𝜔𝜔)𝑬𝑬(𝑟𝑟,𝜔𝜔), which applies to dielectric 
materials. This deviation is caused by induced current 
density waves which are associated with a longitudinal 
electric field that does not exist in dielectric materials. 
In order to be able to more accurately simulate the 
behavior of metallic nanostructures with an incident 
electromagnetic wave, it is necessary to extend the 
classical models by an equation including the 
relationship between the electric field and the induced 
current density. The most commonly used non-local 
model is the so-called hydrodynamic model (HDM) 
which already has a number of applications and 
modifications [2]. For our purposes, however, a 
standard version of HDM in the form of equations (1) 
and (2) will suffice. The first HDM equation is de facto 
Maxwell's wave domain equation assuming that the 
electromagnetic wave propagates in the environment 
of positively charged metal ions [3] of permittivity 
�𝜀𝜀𝑡𝑡 − 𝜀𝜀𝑒𝑒𝑒𝑒�, where 𝜀𝜀𝑡𝑡 denotes the total permittivity of 
the material and 𝜀𝜀𝑒𝑒𝑒𝑒 is the permittivity of the free 
electron gas. The symbol 𝑘𝑘0 = 𝜔𝜔 𝑐𝑐⁄   denotes the wave 
number in vacuum. Equation (2) represents a linearized 
form of equation for the electron gas motion in the EM 
field in the frequency domain. 

∇ × (∇ × 𝑬𝑬) − 𝑘𝑘02�𝜀𝜀𝑡𝑡 − 𝜀𝜀𝑒𝑒𝑒𝑒�𝑬𝑬 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑱𝑱,  (1)                                                     
𝛽𝛽2∇(∇. 𝑱𝑱) + ω(𝜔𝜔 + 𝑖𝑖𝑖𝑖)𝑱𝑱 = 𝑖𝑖𝑖𝑖𝜔𝜔𝑝𝑝2𝜀𝜀0𝑬𝑬.          (2) 

The values of the important constants of the HD model 
(Fermi velocity, plasmonic frequency, nonlocal 

parameter, damping coefficient) for silver and gold are 
given in Table 1. 

Tab. 1 Table of HD model parameters (Fermi velocity, 
plasmonic frequency, nonlocal parameter, damping)[3]. 

MODEL FOR NONLOCAL METALLIC LAYERS 

One of the simplest and also the easiest structures to 
fabricate is a structure composed of planar metal- 
dielectric layers. The analysis of these structures is very 
valuable both for the examination of the deviations and 
limits of classical local theory and also for the 
knowledge that could help in the analysis of more 
complex structures in the future. Recently, some 
numerical simulation methods have been developed 
[4], but our interest here is to find a (quasi)analytical 
solution, specifically using the formalism of transfer 
matrices [5] which is a suitable tool for the analysis of 
planar layered structures. In addition to the advantages 
of simple implementation and calculation speed, 
analytical methods have clearly other positives, such as 
a relatively easy possibility of finding extremes of 
selected quantities or a possibility of adapting to some 
modifications of the HDM or boundary conditions for 
the current density. Our goal was to create a simple 
simulation tool enabling the analysis of both single 
metal layers and metal bilayers, surrounded by  
dielectrics, see Fig. 1. We focused exclusively on the 
description of the interaction of the TM polarized plane 
wave with the metallic gold or silver layer because in 
the case of TE polarization, the existence of nonlocal 
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effects does not manifest. The interaction of the TM 
plane wave with the nonlocal environment can be 
schematically illustrated in Figure 1.   

As indicated in Figure 1, a TM polarized wave 
propagates into a metal layer at the angle of incidence 
𝛼𝛼0. The plane of incidence is determined by the 𝑋𝑋 and 
𝑌𝑌 axes.  The first medium is a dielectric defined by the 
refractive index 𝑛𝑛0 and the impedance 𝑧𝑧0 = �𝜇𝜇 𝜀𝜀⁄ , 
where 𝜇𝜇 and 𝜀𝜀 denote relative permeability and 
permittivity of the first medium, respectively. The 
parameters of surrounding media are marked 
analogously. The numbers in the subscript of the 
quantity are assigned to the surrounding medium, the 
lowercase letters r, s, t, i represent quantities of the 
reflected, scattered, transmitted, and incident fields, 
capitals letters T and L indicate transversal and 
longitudinal waves. The additional superscripts (+) and 
(–) of the wave number are tied to the direction of 
propagation along the 𝑍𝑍 axis. Tangent fields in the y-
axis direction at the first interface are denoted as 𝑬𝑬𝟎𝟎𝟎𝟎 
and 𝑯𝑯𝟎𝟎𝟎𝟎, similarly tangent fields at the second interface 
are denoted as 𝑬𝑬𝟏𝟏𝟏𝟏 and 𝑯𝑯𝟏𝟏𝟏𝟏. 

All the characteristic properties of a considered metal 
layer can be determined by solving the boundary 
conditions of the continuity of tangential components 
of 𝑬𝑬 and 𝑯𝑯 at both boundaries together with the 
conditions 𝑱𝑱𝒏𝒏 = 𝟎𝟎 , i.e. the zero normal components of 
the current density.  From equations (1) and (2), it is 
possible to determine the wave numbers for the 
transverse and longitudinal fields and a specific form of 
the boundary conditions can be determined from the 
geometric concepts, see Fig. 1. In further relatively 
laborious steps, it is possible to obtain relationships 
between the magnitudes of the tangential fields at both 
interfaces of the metal layer and thus obtain a transfer 
matrix, expressed with a general expression (3) (the 
symbol 𝜂𝜂0 means the vacuum impedance): 

 � 𝑬𝑬𝟎𝟎𝟎𝟎
𝜂𝜂0𝑯𝑯𝟎𝟎𝟎𝟎

� = 𝑀𝑀1 �
𝑬𝑬𝟏𝟏𝟏𝟏.
𝜂𝜂0𝑯𝑯𝟏𝟏𝟏𝟏

�.     (3)                                                                       

The transfer matrix of the resulting multilayer 
structure, i.e. the structure with isolated metal layers, 
can be expressed using the transfer matrices of the 
individual layers as   

 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀1 ∗ 𝑀𝑀2 … … .𝑀𝑀𝑛𝑛.          (4) 

The index numbering of the layers and their transfer 
matrices is considered ascending in the direction of 
propagation of the incident wave. The situation is much 
more complicated in the case of two bounded metal 
layers.  The boundary condition for the normal 
components of the current density at the joint interface 
of the two metals no longer applies and even relation 
(4) for the total transfer matrix cannot be used.
However, in general, if the total transfer matrix of a
given multilayer is already known, then the individual
characteristic quantities of the whole structure can be
determined as an analytical function of the
components of the total transfer matrix.

RESULTS 

We have built an analytical method based on the 
above-mentioned principles, which can analyze the 
non-local effects of both metal layers and metal 
bilayers. Our research has so far been limited to finding 
the parameters of the structure and the incident TM 
plane wave in which the nonlocal response is more 
pronounced. Fig. 2 shows two cases of  analyzed 
structures: (a) a single metal layer and (b) a metal 
bilayer which we investigated.  

Fig. 2 Illustration of structure and main parameters of (a)  
single metal layer and (b) double metal layer.  

In order to assess the effect of the nonlocal 
response, we chose the deviation between 
reflectances (𝑅𝑅𝐻𝐻𝐻𝐻 − 𝑅𝑅), where 𝑅𝑅𝐻𝐻𝐻𝐻 is the 
reflectance calculated using the HD nonlocal 
model while 𝑅𝑅 is the reflectance determined in the 
standard (local) way. Below we present selected 
calculations of the reflectance deviation for the 
gold metal layer (see Figs. 3 and 5) and their 
analogues (see Figs. 4 and 6) for the metal bilayer 
(for simplicity selected here as: the upper layer as 
gold, lower layer as silver, same thickness). From 
our extensive simulations, it turns out that a more 
significant deviation due to nonlocal behavior can 

Fig. 1 Scheme of nonlocal interaction of metal layer with TM-
polarized plane wave. 
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be expected mainly for the sliding angles of 
incidence (the angle 85.5 degrees chosen as the 
optimal value).  

Fig. 3. Reflectance deviation between HD and local model as 
dependence on gold layer thickness 𝒅𝒅 and wavelength 𝝀𝝀. 

Fig. 4. Reflectance deviation between HD and local model as 
dependence on total gold-silver layer thickness 𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕 and 
wavelength 𝝀𝝀. 

Fig. 5. Reflectance deviation between HD and local model  for 
gold layer at wavelengt 𝝀𝝀 = 𝟓𝟓𝟓𝟓𝟓𝟓 𝒏𝒏𝒏𝒏 as dependence on 
upper 𝒏𝒏𝟎𝟎 and bottom 𝒏𝒏𝟐𝟐 refractive indices.  

Figs. 3 and 4 show the dependence of the 
reflectance deviation on the wavelength of the 
incident wave and the thickness 𝑑𝑑 of the gold layer 
(𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡  for the gold-silver bilayer in Fig. 4), for the 
refractive indices of the media of 𝑛𝑛0 = 1.7  and 
𝑛𝑛2 = 1.6 (or 𝑛𝑛3, respectively). 

Fig. 6. Reflectance deviation between HD and classic model 
for gold-silver bilayer at wavelengt 𝝀𝝀 = 𝟓𝟓𝟓𝟓𝟓𝟓 𝒏𝒏𝒏𝒏 as 
dependence on upper 𝒏𝒏𝟎𝟎 and bottom refractive index 𝒏𝒏𝟑𝟑. 

The deviation of the reflectance is fundamentally 
influenced by the refractive indices of the external 
environment, such dependence at a fixed thickness of 
the gold layer and the total thickness of the bilayer at 8 
nm (@ wavelength of 532 nm) is shown in Figs. 5 and 6, 
respectively.  From the analysis presented here, it is 
evident that in specific situations, for certain 
parameters, non-local effects can manifest themselves 
in a significant way for thin metal layers and bilayers. 

Acknowledgements: This work was financially 
supported by the Czech Science Foundation under 
Project 1900062S and Project Center of Advanced 
Applied Sciences CZ.02.1.01/0.0/0.0/16_019/0000778. 

References 

[1] N. Mortensen, "Nonlocal formalism for nanoplasmonics:
Phenomenological and semi-classical considerations",
Photonics and Nanostructures - Fundamentals and
Applications, vol. 11, no. 4, pp. 303-309, 2013

[2] N. Mortensen, S. Raza, M. Wubs, T. Søndergaard and S. 
Bozhevolnyi, "A generalized non-local optical response
theory for plasmonic nanostructures", Nature
Communications, vol. 5, no. 1, 2014

[3] S. Raza, S. Bozhevolnyi, M. Wubs and N. Asger 
Mortensen, "Nonlocal optical response in metallic
nanostructures", Journal of Physics: Condensed Matter, 
vol. 27, no. 18, p. 183204, 2015 

[4] J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. Smith and 
A. Moreau, "Numerical tool to take nonlocal effects into
account in metallo-dielectric multilayers", Journal of the
Optical Society of America A, vol. 32, no. 8, p. 1581, 2015 

[5] M. Born and E. Wolf, Principles of optics. Cambridge:
Cambridge University Press, 1999.

T.P.6

4 - 6 May 2022 - Milano, Italy - 23rd European Conference on Integrated Optics 




