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Subwavelength metamaterials provide a powerful tool for the realization of compact and 
high-performance integrated photonic devices. In this work, we apply subwavelength 
metamaterials to novel devices for mode multiplexing and power splitting in silicon on 
insulator. We experimentally demonstrate ultra-broad operational bandwidths over 245 nm 
in both applications.  
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INTRODUCTION 

Mode-division multiplexing (MDM) in integrated silicon photonics is emerging as a fundamental technology to 
address the challenge of ever-increasing global data traffic and data center demand.[1] High-performance mode 
converters and multiplexers/demultiplexers (MUX/DEMUX) are the fundamental building blocks at the core of 
MDM technologies, with current architectures including asymmetric directional couplers (ADC), asymmetric Y-
junctions, adiabatic tapers, and topologies based on inverse design, among others.[2-5] In particular, MDM 
architectures based on multimode interference (MMI) couplers have reported good performance over a relatively 
wide wavelength range[6-7], although further bandwidth enhancements are still sought after. Auxiliary devices 
beyond MUX/DEMUX are also required in MDM systems, such as multimode power splitters. A broad range of 
power splitters has been proposed, including topologies based on symmetric Y-junctions, MMIs, inverse and 
adiabatic tapers, directional couplers, slot waveguides or photonic crystals.[8-11] In particular, symmetric Y-
junctions[8] are one of the most common alternatives given their ease of design, simply consisting of a stem 
waveguide ramifying into two arms of the same width. However, finite resolution of fabrication processes results 
in deviations from the nominal design at the junction tip, and degrade the performance of the fabricated devices. 

Subwavelength grating (SWG) metamaterials provide a powerful tool for improving the performance of 
MUX/DEMUX and power splitters, among other photonic devices.[12] SWG structures are arrangements of dielectric 
materials with a scale substantially smaller than the operating wavelength, hence suppressing diffractive effects 
and enabling dispersion engineering.[13] In the MDM field, SWGs have been applied to adiabatic couplers[14], ADCs[15] 
or MMI couplers[16,17]; whereas in the field of power splitting, SWG engineering has also been applied to asymmetric 
directional couplers[18], MMI devices[19], or Y-junctions[20], among others.  

In this work, we review our latest SWG-based MUX/DEMUX and power splitter[17,20], expand on the experimental 
characterization of both devices, and present enhanced topologies for improved performance and additional 
features such as higher-order mode support. In particular, we experimentally demonstrate ultra-broad operational 
bandwidths over 245 nm in both SWG-enhanced mode multiplexer and power splitter. 

MODE MULTIPLEXING 

Our SWG MUX/DEMUX is based on the combination of a MMI, a 90º phase shifter and a symmetric Y-junction (Fig. 
1). Both the MMI and the phase shifter are implemented with SWG metamaterials for enhanced bandwidth.[17] 
When operating as MUX, the fundamental transverse electric modes (TE0) in ports 1 (blue) and 2 (green) are equally 
divided by the metamaterial-based MMI, while inducing a 90º phase shift between MMI output ports. The phase 
shifter delays the mode propagated through the upper arm an additional 90º, which either compensates the MMI 
phase shift (blue), or results in a total phase shift of 180º (green). As a result of the phase relations of the modes at 
the Y-junction arms, their conversion results in TE0 (blue) or TE1 (green) at port 3.  
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Fig. 1. Mode converter and multiplexer based on an SWG MMI, an SWG phase shifter and a symmetric Y-junction. 

The SWG MUX/DEMUX was fabricated in a commercial foundry using silicon-on-insulator (SOI) wafers with a silicon 
thickness of 220 nm, a buried oxide (BOX) layer of 2 µm, and a 2.2 μm thick SiO2 upper cladding oxide. SWG edge 
couplers were incorporated for high-efficiency input and output coupling.[21] Experimental characterization of a full 
MUX/DEMUX link (i.e. devices connected back-to-back), presented in Fig. 2., shows insertion losses of 2 dB and 
crosstalk better than -17.2 dB for the full link over a 245 nm bandwidth (1427 – 1672 nm). These results entail a 100 
nm bandwidth expansion when compared to the device with a non-SWG phase shifter.[16] 

 
Fig. 2. Experimental transmittance measurements for the proposed mode converter and multiplexer for output modes TE0 and 

TE1, when using input 1 (a) and input 2 (b). 

POWER SPLITTING 

Our power splitter is based on a SWG-engineered symmetric Y-junction for reduced mode confinement at the 
junction tip (Fig. 3). This topology circumvents minimum feature size (MFS) limitations at the junction tip and 
significantly improves TE0 excess loss (EL), at the expense of a slight increase in TE1 loss. Arm width was optimized 
to minimize effective index mismatch at the interface between the stem (i.e. multimode input waveguide) and the 
arms.[21] The device was optimized considering two target minimum feature sizes, namely 50 nm and 100 nm. 
Conventional Y-junctions with the same MFS limitations were also fabricated for comparison.   

  
Fig. 3. Scanning electron microscope image of the proposed subwavelength Y-junction 

The SWG power splitter was fabricated in the same 220 nm SOI platform as the MUX/DEMUX devices. Cascaded 
splitters were included for accurate characterization of TE0 loss, whereas a dual-core adiabatic taper MUX[5] was 
incorporated for TE1 loss measurement. Fig. 4 shows the excess los under 0.3 dB over a 260 nm bandwidth for TE0 
in the high resolution lithography (MFS = 50 nm), and EL less than 1 dB for TE1 within a 100 nm bandwidth. 

     
Fig. 4. Experimental excess loss of the proposed subwavelength Y-junction (solid) and a conventional Y-junction (dotted), with 

minimum feature sizes of 50 nm (red) and 100 nm (blue), for TE0 (a) and TE1 (b) modes.   
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CONCLUSIONS 

We have presented a mode multiplexer/demultiplexer and a multimode power splitter based on SWG 
metamaterials. Experimental characterization of the fabricated devices demonstrates bandwidths over 245 nm in 
both applications. 
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