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The control of the frequency spectrum of light is a ubiquitous problem in physics and engineering. Fast 
telecommunication protocols rely on frequency multiplexing, and the indistinguishability of photons, strictly 
related to their spectral properties, is a necessary requirement for the entanglement in photonic quantum 
technologies. Most of the available protocols for the modification of the spectral properties of a classic light signal 
or single photon wave-packets are based on non-linear wave mixing, which is intrinsically stochastic and strongly 
dependent on the nonlinear susceptibility of the employed material. Most recently, dynamical modulation has 
emerged as an alternative platform to manipulate the frequency of light trapped in resonating structures [1] or 
travelling in isolated waveguides [2]. In this work, we theoretically inspect the dynamical modulation of 
homogeneous 1D arrays of optical waveguides using a refractive index perturbation caused by a sound wave 
travelling in a material with strong acousto-optic response. With respect to previous works, the model presented 
here is based on cavity-less design that allows to work with arbitrarily broadband signals. Moreover, the study of 
1D chains enables the observation of topological phenomena unavailable in isolated waveguides such as disorder 
protected unidirectional conversion of light frequency. 

DYNAMICAL MODULATION OF AN OPTICAL WAVEGUIDE 

We consider paraxial light propagation in a weakly guiding optical waveguide such as the ones fabricated on fused 
silica substrate using femtosecond direct laser writing technique [3]. Considering a reasonably small frequency 
range, the waveguide supports single mode propagation over a continuous frequency spectrum 𝜔 with dispersion 
relation 𝜅𝑙(𝜔). We now include, as depicted in fig. 1a, a monochromatic travelling-wave refractive index 
perturbation Δ𝑛(𝑧, 𝑡) = 2𝑏cos(𝒌𝑚 ⋅ 𝒓 − Ω𝑚𝑡), that can be generated by a sound wave propagating in a material 
with strong acousto-optic response. To gain control with respect to the longitudinal wavevector of the 
perturbation, we consider the sound propagating with an angle 𝜃 with respect to the optical waveguide axis so 
that the longitudinal wavevector can be written as 𝑘𝑚

𝑧 = 𝑘𝑚 cos(𝜃). This condition could be put in practice by 
enforcing a specific phase relation between individual sound emitters distributed in an array. Employing a linear 
expansion of 𝜅𝑙(𝜔) around a carrier frequency 𝜔0 (figure 1b), the equation describing the evolution of the 
spectral components of an impinging light wave packet can be expressed [4] in the form of a Schrodinger-like 
equation in a continuous 1D frequency space with long-range interactions between frequency components 
separated by the dynamical modulation frequency Ω𝑚: 

  𝑖𝜕𝑧𝐸(𝑧, 𝜔) = 𝑉𝑠𝜔𝐸(𝑧, 𝜔) − 𝛽𝐸(𝑧, 𝜔 ∓ Ω𝑚) . (1) 

In equation (1), the hopping amplitude 𝛽 = 𝑘0𝑏 is proportional to the refractive index perturbation and the 
diagonal term 𝑉𝑠 = Δ𝑘/Ω𝑚   is proportional to the phase mismatch Δ𝑘 = 𝑘𝑚

𝑧 − Ω𝑚𝜕𝜅𝑙/𝜕𝜔 between the z-
component of the refractive index perturbation and the light mode and represents a (static) scalar potential along 
the frequency dimension. Assuming a monochromatic light input at frequency 𝜔0 the symmetry of the problem 
allows to restrict the study to a discrete set of frequencies {𝜔𝑛} =  𝜔0 + 𝑛Ω𝑚 and equation (1) can be fully 
discretized into the following 

  𝑖𝜕𝑧𝑎𝑛(𝑧) = Δ𝑘𝑛𝑎𝑛(𝑧) − 𝛽𝑎𝑛∓1(𝑧) .         (2)
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In the case of phase matching Δ𝑘 = 0 both eqn. (1) and (2) represent a system in which the dynamical modulation 

induces a coupling between different frequencies which ultimately modifies the spectral property of a signal 

travelling in the modulated waveguide. If we consider a narrowband input spectrum the dynamics in the synthetic 

space is well described by eq. (2) in which only one component 𝑎𝑛(𝑧) ≠ 0 for 𝑧 = 0. As illustrated in figure 1c 

the diffraction pattern obtained is typical of a discrete system. On the contrary, if the spectrum of the input signal 

is much broader than the dynamical modulation frequency Ω𝑚, equation (1) describes a continuous 1D space 

with short range interactions and the diffraction pattern is typical of propagation in a continuous space.  

In this regime the time duration of the input signal is much shorter than the period of the dynamical modulation 

and, as we discuss in [4], the arrival time of the light pulse with respect to the dynamical modulation can be used 

to control the dynamics in the frequency dimension. Indeed when the spectrum of the input light pulsw 

encompasses several sites of the synthetic space lattice, the phase relation between these frequency components 

(the so-called frequency momentum) plays the same role of the momentum for a quantum particle, or the 

transverse wavevector for light in waveguide arrays. As the reciprocal space of frequency is time, frequency 

momenta can be realistically excited with a simple time delay of the light pulse. 

Fig. 1.(a) schematic of an optical waveguide with a travelling wave refractive index modulation. (b) spectral lattice induced in 
the continuous dispersion relation of the waveguide fundamental mode. (c,d) Spectral power density as a function of the 
propagation distance for (c) a narrowband (𝚫𝝎 = 𝟎. 𝟑𝝎𝒎) and (d) a broadband (𝚫𝝎 = 𝟑𝝎𝒎) light input in a dynamically 

modulated waveguide 

TOPOLOGICAL EFFECTS IN A DYNAMICALLY MODULATED 1D HOMOGENEOUS CHAIN 

To fully exploit the potential of our model in terms of topological robustness it is necessary to increase the 
dimensionality of the system. To this aim we consider an array of identical, equally spaced, optical waveguides 
placed at positions 𝑥ℓ = ℓ𝑑 subject to the same dynamical modulation propagating with an angle 𝜃 with respect 
to the z-axis Δ𝑛(𝑥, 𝑧, 𝑡) = 2𝑏cos(𝑘𝑚

z 𝑧 + 𝑘𝑚
x 𝑥 − Ω𝑚𝑡), where 𝑘𝑚

𝑧 = 𝑘𝑚cos(𝜃) and 𝑘𝑚
𝑥 = 𝑘𝑚sin(𝜃) are, 

respectively, the longitudinal and transverse components of the modulation wavevector. Under tight binding 
approximation for the isolated waveguide modes, the equation describing the evolution of the spectral 
components of light travelling in the ℓ-th waveguide of the array can be written as: 

𝑖𝜕𝑧𝐸ℓ(𝑧, 𝜔) = 𝑉𝑠𝜔𝐸ℓ(𝑧, 𝜔) − 𝛽𝑒±𝑖Φℓ𝐸ℓ(𝑧, 𝜔 ∓ Ω𝑚) −  𝜉𝐸ℓ±1(𝑧, 𝜔),   (3) 

Where ξ represents the coupling coefficient between closely placed waveguides and Φ =  𝑘𝑚sin(𝜃)𝑑 is 
proportional to the transverse component of the modulation wavevector. As already mentioned in the previous 
section, a full discretization of the frequency space leads to a lattice version of equation (3)  

𝑖𝜕𝑧𝑎ℓ,𝑛(𝑧) = 𝑛Δ𝑘𝑎ℓ,𝑛(𝑧) − 𝛽𝑒±𝑖Φℓ𝑎ℓ,𝑛∓1(𝑧) −  𝜉𝑎ℓ±1,𝑛(𝑧), (4)
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Equation (4) describes a rectangular lattice in a synthetic 2D space composed by a spatial dimension (the 
waveguide index) and a synthetic dimension associated with the light frequency. As illustrated in figure 2a, the 
nonreciprocal phase factor in the coupling term along the frequency dimension provides a linear gauge field that, 
under Peierls substitution, is analogous to a magnetic field perpendicular to the 2D plane. As a result, eq. (4) is 
analogous to a Harper Hofstadter model characterized by a flux-per-plaquette of Φ.  

A well-known property of the Harper Hofstadter lattice is than, whereas the flux takes rational values Φ = 𝑝/𝑞, 
with p and 1 co-prime integers, the spectrum is divided into exactly 𝑞 well separated bands with topologically 
nontrivial properties. As a result, topological states appear within each bandgap that can be used to transport 
light in a unidirectional fashion. As an example, we consider a Φ = 1/4  Harper Hofstadter model. In figure 2b we 
plot the dispersion relation of such lattice by considering a truncation along the real space and an infinite 
extension along the frequency space. The states in fig 2b are color coded accordingly to their localization in the 
spatial dimension, as highlighted in figure 2a. At each bandgap only one couple of states with well-defined and 
opposite group velocities exist, with exponential localization at opposite spatial terminations of the waveguide 
array. Counterpropagating states cannot scatter into one another because of opposite edge localization therefore 
elastic backscattering is inhibited and, once excited, these states can be used to shift the light frequency in a 
unidirectional and topologically protected way, as depicted in figure 2c. Crucially, for each value of the frequency 
momentum 𝑘𝜔 only one topological mode exists at each spatial termination. Therefore, it is possible to excite a 
desired red(blue)-shifting topological mode by simply injecting a light pulse in the proper edge waveguide with 
the right time delay. Of particular interest for applications, we note that each edge waveguide supports both blue 
and red-shifting topological modes with a relative difference in the frequency momentum of Δ𝑘𝜔 = 𝜋/Ω𝑚. If a 
train of pulses with a time difference equal to Δ𝑘𝜔  is injected into an edge waveguide, the even and odd pulses 
will excite, respectively blue- and red-shifting topological modes leading to spectrally separated pulses at the 
output of the device. This mechanism can have several applications in telecommunication technology for the 
realization of time-frequency (de)multiplexing devices or in quantum technologies for manipulating the 
entanglement between the time, frequency and spatial variables of photons 

Fig. 2. a) Schematic representation of the synthetic 2D position-frequency space emerging from a dynamically modulated 1D 
Waveguide array. b) dispersion relation of a ¼ Harper Hofstadter lattice. Topological edge states are color-coded accordingly 
to their localization in the synthetic 2D space as in (a). c) Robust frequency up-conversion mediated by a topological state in 

the synthetic space 
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