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We have developed a methodology to incorporate nonlocal optical responses, described with 
a simple hydrodynamic model, into the numerical Fourier modal method (FMM) technique, 
to enable broadening of simulation portfolio of such physical phenomena in plasmonic 
nanostructures. 
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INTRODUCTION 

Approximation of the local response of the material is a common approach in the analysis of the resonant behavior 
of the interaction of light with plasmonic nanostructures. However, as the characteristic dimensions of such 
structures decrease (in the order of nm), as has recently been shown, models based on nonlocal response (or even 
quantum interaction) are needed to describe such plasmonic systems [1]. These new models then provide an 
explanation of effects such as new types of resonances and their blue spectral shifts. In reality, in microscopic 
descriptions of light-matter interactions, such nonlocal optical response reveals due to the quantum mechanical 
uncertainties in material excitations. Up-to-date, there are several nonlocal models existing, based on different 
starting conditions, and predicting not always consistent and equivalent phenomena. Selected nonlocal models 
have already been successfully implemented in a number of numerical methods such as finite element method [2], 
finite-difference time-domain method, integral methods, Mie theory, and others. However, successful and effective 
implementation [3,4] using modal methods is missing. 

NONLOCAL FOURIER MODAL METHOD 

We have relied on our previous profound experience with both periodic (for one-dimensional - 1D and two-
dimensional - 2D cases)  and aperiodic version (i.e. isolated structures - for 2D and three-dimensional - 3D cases) of 
the FMM technique (or traditionally called rigorous coupled wave analysis, RCWA [5]), applied extensively in various 
rather complex problems, including, e.g. plasmonic gratings, periodic arrays exhibiting the extraordinary optical 
transmission (EOT) effects, plasmonic metasurfaces, etc., with traditional local-response approximation (LRA), and 
several important technical extensions implemented, such as proper Fourier factorization, adaptive spatial 
resolution, and symmetrization techniques [6-8]. Here, based on this experience, we have incorporated newly the 
nonlocal-response approximation (NRA) into the periodic FMM technique, described with a proper hydrodynamic 
model. In modifying the FMM method for these effects, our approach is based on [3]. We consider Maxwell's 
equations in the frequency domain with linearized hydrodynamic correction [2]. This model of nonlocal phenomena 
is one of the simpler (compared to more complex or quantum models) but it can well describe many experimental 
results. 

 Consider a one-dimensional diffraction grating with a grating period Λ (see Fig. 1a). A plane wave with a wavelength 
of λ is incident upon the diffraction grating at an angle θ (we consider only planar diffraction), due to the nonlocal 
effect in metals, we can focus only on TM polarization here. The FMM method is based on the evolution of the 
electromagnetic field and material parameters (within one layer) into a Fourier series. Because we have limited 
ourselves to TM polarization here, Maxwell's equations (frequency domain) contain only 3 electromagnetic field 
components: Ex, Ez, and Hy. The algorithm consists of two basic steps. First, the eigenvalue equation is solved, due 
to the non-locality, however, the electric intensity Ex is connected with the divergence of current density J. In the 
second step, the S matrix propagation algorithm is solved. Compared to the non-local variant, one equation for 
boundary conditions of Jz has to be added.  
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(a)   (b)   (c) 

Fig. 1.: (a) Basic geometry and notation of a periodic diffraction grating, Λ represents the grating period, θ is the incident angle 
of the TM polarized plane wave, εin is the permittivity of a input medium, and εout is the permittivity of the output medium 

(substrate); (b) Schematic of the multilayer structure, parameters: λ=543 nm (TM polarization), prism is given with TiO2 
(n=2.5489-0.0003i), metal layer and metal substrate are made of silver (n=0.1442-3.1365i); (c) one period of the resonant 

diffraction grating, similar to (a), used for non-local simulations. The grating period is 200 nm. 

RESULTS 

A first example is a simple multilayer structure (see Fig. 1b), for simplicity, we applied the structure from the article 
[9] and here we checked the results of our novel non-local code with the Moosh program [9] (see also:
https://github.com/AnMoreau/Moosh), applicable for nonlocal layers. The input TM polarized plane wave @ λ=543
nm propagates through a TiO2 prism (n=2.5489-0.0003i), a plasmon mode is then generated on a silver layer with a
thickness of 18 nm. The propagation properties of the plasmon mode are further influenced by a thin layer of air
with a width of 10.7 nm. Below the air layer is a silver substrate. Since the metal layer is 18 nm thick (+ possible
resonant effects), non-local effects are already expected here which was confirmed. Figure 2a shows the
dependence of the reflectivity R on the incident angle θ, again, there is a comparison of our code with the program
Moosh shown. Due to the fact that the condition for the generation of the plasmon mode is fulfilled for a certain
angle, there is a decrease in reflection around θ=80°. If we take into account the nonlocal properties of silver,
represented with the β parameter, β=1.35×106  m/s , there is a further decrease in reflection and there is a small
shift of the peak towards a smaller angle of incidence. In both cases, we can see very good agreement between our
nonlocal tool and the software Moosh. Similarly, figure 2b shows the spectral dependence of the reflectivity R. The
blue line shows the local behavior and the red line the nonlocal behavior. The angle of incidence is set to θ =82.61°.

(a)        (b)  

Fig. 2.: (a) Dependence of the reflectivity R on the incident angle θ: comparison of our new implementation with the program 
Moosh. Local solutions are shown in blue, nonlocal solutions (for β=1.35×106 m/s) are shown in red; (b) Dependence of the 

reflectivity R on the wavelength λ (θ =82.61°). Again, local solution is shown in blue, nonlocal solution (for β=1.35×106 m/s) is 
shown in red. 

A second example given here is a resonant diffraction grating (see Fig. 1c), this example is taken from [10]. An 
incoming plane wave (TM polarization) propagates perpendicularly to the 1D diffraction grating with a period of 
200 nm. A silver rod with dimensions 50 nm x 50 nm is separated from the metal substrate (silver) by a thin dielectric 
layer (n=1.33) with a thickness of 3 nm. Figure 3a shows a comparison of the zero-order reflectivity spectra for 
different number of orders N showing a very good convergence behavior. Next, figure 3b shows the spectral 
dependence of the reflectivity. Clearly, there is a resonant peak present around the wavelength of 900 nm. To check 
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the performance of the nonlocal version of the FMM method, there is first a local calculation using the standard 
version of the FMM (blue line) shown, together with a local calculation using the non-local version of the FMM (blue 
dots, here, the nonlocality is just switched off). As can be seen, the results obtained are identical. Further, the red 
line shows a rather artificial (but numerically appreciative) case of switching on only the nonlocality of the substrate, 
while the black line represents the more realistic case where each metal component is considered nonlocally. 
Clearly, the expected blue shift of the resonance towards shorter wavelengths has gradually manifested itself, for 
the red and black lines, respectively. Finally, the applicability and flexibility of our nonlocal FMM have been shown, 
making it a useful tool for further investigations in the field of nanoplasmonics. 

(b)        (b)  

Fig. 3.: (a) Comparison of the zero-order reflectivity spectra for different number of orders N; (b) Spectral dependencies of zero-
order reflectivity efficiency. The blue curve represents the local calculation using the algorithm given here, which is checked 

(blue dots) by the standard RCWA algorithm, the red line shows the calculation of only nonlocal substrate, while the black curve 
shows the calculation where all metal components are considered nonlocaly. 
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