systems based on Scalable Spectrum/space aggregation for future aglle high capacity metrO Networks

Compact InP Wavelength Blocker based on a Single AWG and SOA gates for Metro Networks

Institute for Photonic Integration

Materials • Devices • Systems

Netsanet Tessema, Kristif Prifti, Aref Rasoulzadehzali, Ripalta Stabile, Nicola Calabretta

Institute for Photonic Integration, Eindhoven University of Technology, The Netherlands

Traditional Wavelength blocker (WBL) 1. Introduction 1. Introduction 1. Introduction

Based on two AWGs and soagates

Centeral wavelength mismatch

Proposed novel WBL

- Folded: based on a single AWG
- Scalable:
 - Modular and compactness

II. Proof of concept PIC implementation: folded WBL

2x8 AWG

- ❖ Ch1 (O1,O5)
- **\$** Ch2 (O2,O6)
- Ch3 (O3,O7)
- ❖ Ch4 (O4,O8)

Folded WBL

- ❖ 4 –SOA gates
- waveguide crossing

III. PIC characterization 2x8 AWG, 12

V. Conclusion

- Experimental verification of a novel WSS design
- supports scalability by reducing footprint
- Low-loss operation enabled by booster SOAs

IV. Experimental Setup and Results

10 Gbps OOK transmission

- Error free operation
- Penalty 1 dB for Ch2 and 1.3 dB for Ch4

