Fast Silicon-Photonics Wavelength-Selective Phase Shifter

C. Porzi¹, F. Falconi², L. Ansalone³, P. Ghelfi², A. Bogoni^{1,2}

1: Scuola Superiore Sant'Anna, TeCIP Institute, 56124 Pisa, Italy

2: CNIT - National Inter-University Consortium for Telecommunications, 56124 Pisa, Italy 3: ASI-Italian Space Agency, Via del Politecnico, snc 00133 Roma

Abstract: A fast wavelength-selective phase shifter in silicon-on-insulator technology based on carrier-depletion effect in a microring resonator is designed and experimentally verified. Phase variation of 250°, bandwidth of 10GHz and insertion loss of 3.5dB have been demostrated

Microring resonators (MRRs) in all-pass configuration have long been proposed and demonstrated as an effective mean for controlling the phase of radio-frequency (RF) signals [1].

Strong thermo optic effect of silicon by heating the ring waveguide has been widely used [2], [3] to design devices with high efficiency and phase tuning range but with response time limited to few us (🙁

To overcome bandwidth limitation 😂 the use of fast plasma dispersion effect using carrier injection in a doped MRR has also been reported [4] but with limited phase shift range <180°🥲

For the first time an optimized design of a MRR embedding pn-doped waveguides to exploit carrier-depletion mechanism to obtain a fast phase shifter (10Ghz bandwidth (**)) with a wide phase range: >250°(**) has been proposed

An analytical model describing the pn-doped waveguide behavior as a function of the applied reverse voltage has been employed to take in account relatively weak index change associated with modulation of depletion region and the optical losses due to free-carriers in the doped

Available doping concentrations for the selected foundry in a multi-project wafer (MPW) run has been estimated based on the provided values for the sheet resistance of the implanted waveguide with p- an n-type dopant

The doped waveguide length, Lpn and the cross-coupling power coefficient κ of the directional coupler (DC) between the ring and input-output access bus waveguide have been optimized to:

- Maximize the phase shift for a maximum applied voltage below the inverse breakdown
- to keep low as low as possible the Q-factor of the resonator for minimizing the residual amplitude modulation

Transmission and phase response for different reverse voltage bias are shown for Lpn=200 μm, and κ=0.2

Experimental setup and results

The fast selective PS has been fabricated using a SiP MPW run [6].

A resistive heater is placed in proximity to a portion of the MRR undoped waveguide to provide an additional broad tuning mechanism, as required for precise resonance alignment when multiple MRRs are cascaded to achieve full 360° phase shift control.

The group-delay characteristics of the MRR for different levels of Vbias have then been measured using a standard phase shift method [7].

The optical phase variation and insertion loss over the full considered voltage swing at a detuning of 3 GHz in respect to the unbiased resonant frequency are plotted

the high-speed operation of the selective PS has been assessed by measuring the electro-optical bandwidth of the device under small-signal regime using a Network Analyser

- A silicon-photonics microring resonator embedding a pn-doped waveguide designed for implementing a novel fast wavelength-selective phase shifter through carrier-depletion mechanism has been presented
- ▶ The MRR has been dimensioned for optimizing its performances in terms of optical phase variation, amplitude modulation and insertion loss
- ▶ Experimental characterization confirms phase shift range >200°, residual amplitude modulation <3dB and response time <1ns

References

- [1] D. B. Adams, and C. K. Madsen, J. Light. Technol., vol. 26, pp. 2712-2717, Aua 2008
- [2] M Pu, et al.Photon. Technol. Lett., vol. 22, pp. 869-871, June 2010.
- [3] G. Choo, et al, J. Lightw. Technol., vol. 36, pp. 5263-5275, Nov. 2018
- 4] J. Tang, et al, in Proc. WOCC 2016, Chengdu, China, May 2016, pp.1-3.
- [5] L. Chrostowski, and M. Hochberg, Silicon photonics design: from devices to systems, Cambridge University Press, 2015.
- [6] https://europractice-ic.com/mpw-prototyping/siphotonics/imec/
- [7]S. Ryu, Y. Horiuchi, K., J. Lightw. Technol., vol. 7, pp. 1177-1180, Aug. 1989.