Cryogenic operation of a polarisation converter and directional coupler in LiNbO$_3$ for quantum circuits

Frederik Thiele1, Jan Philipp Höpker1, Felix vom Bruch2, Harald Herrmann2, Raimund Ricken2, Viktor Quiring2, Christof Eigner2, Christine Silberhorn2, Tim Bartley1

1 Mesoscopic Quantum Optics, Department of Physics, Warburger Str. 100, 33098 Paderborn, Germany
2 Integrated Quantum Optics, Department of Physics, Warburger Str. 100, 33098 Paderborn, Germany

1) Quantum Photonic Chip

Source
- z-cut Lithium Niobate:
 - Ti waveguides loss: 0.1dB/cm
 - 90% fibre overlap
 - large χ^2-nonlinearity
 - electro-optical effect [1,2]

Manipulation

Detection

SNSPDs: ~1K

4) Directional Coupler

splitting ratio:
- $52\pm2.5\% @300K$
- $55\pm2.5\% @22K$

5) Polarisation Converter

- 23dB modulation depth
- 43% fibre-to-fibre transmission

2) Temperature Dependent Refractive Index Shift

a large index shift is expected [3]

phasematched wavelength shift for polarisation converter

3) Experimental Setup

References

German Federal Ministry of Education and Research, funding program Photonics Research Germany, contract number 13N14911