

Silicon nitride passive photonic platform for applications at visible wavelengths: design, fabrication and characterization

Marcin Lelit *1,2 , Mateusz Słowikowski 1,2 , Andrzej Kaźmierczak 1 , Stanisław Stopiński 1 , Krzysztof Anders 1 , Maciej Filipiak 2 , Marcin Juchniewicz², Bartłomiej Stonio^{1,2}, Bartosz Michalak², Krystian Pavłov², Piotr Wiśniewski^{1,2}, Romuald B. Beck^{1,2} and Ryszard Piramidowicz¹

¹Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland ²Warsaw University of Technology, Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland

*e-mail: marcin.lelit@pw.edu.pl

Introduction

Recent pursuit in replacing electronic devices with photonic integrated circuits in a growing number of applications resulted in silicon nitride (Si₃N₄) as a material of choice for development of versatile photonic platform due to:

- Wide transparency window ranging from visible to mid-infrared range
- Low thermo-optic coefficient
- CMOS-compatibility
- Low loss and compactness of the devices

Despite commercial Si₃N₄-based platforms available, multiple applications like biophotonics, telecom, datacom and sensing applications and usage in hybrid photonic devices [2] leaves room further improvement and introduction of next platforms to the market.

In this work we report recent results of development of Si₃N₄-based photonic devices as an initial step to establish flexible generic technology photonic platform and to offer multi-project wafer (MPW) production runs. Three sets of test devices have been developed: waveguides (WGs) including tapers and bends, symmetrical multimode interferometer (MMIs) couplers and arrayed waveguide gratings (AWGs)

Simulation and design

Numerical methods implemented in commercial software packages have been utilized for waveguides (WGs) cross-section optimization and later for devices simulations. Film Mode-Matching (FMM) method has been used for investigation of electromagnetic field distribution for modes in WGs and bends. For MMIs and AWGs simulations, a Finite Difference (FD) method has been used.

1st Layout:

- WGs of widths from 0.3 μm to 2.9 μm with 0.2 μm step
- Three complex series of delay lines
- waveguides for testing exclusively bending radius influence on losses

2nd Layout:

MMIs 1x2, 1x4, 1x8 and symmetrical cascades comprising MMIs optimized for 380, 470, 550, 590, 610, 660 nm

3rd Layout:

- WGs 90 deg. delay lines
- series of AWGs 1x4 and 1x8 optimized for: 380, 470, 550, 590, 610, 660 nm
- MMIs 1x2 + 2xAWG 1x4 and 1x8symmetrical cascades optimized for: 380, 470, 550, 590, 610, 660 nm

Fabrication

- 4-inch silicon wafers (100)
- **Processing:**
 - Cleaning
 - Oxidation (1200 °C) 2.3 μm SiO2 layer
 - Low Pressure Chemical Vapor Deposition (LPCVD) $-0.32 \mu m Si_3 N_4 layer$
 - E-beam lithography with a positive resist patterning
 - Development and dry reactive ion etching (RIE)

Characterization

Characterization setups:

- 1st: Laser diode 660 nm and fiber to chip and chip to fiber coupling/decoupling for fixedwavelength measurements
- 2nd: Ti:Sapphire laser and dye laser for wavelength tuning (570 to 630 nm). Light was free space coupling to chip with 50x objective and decoupling with fiber

WGs average loss:

- Straight WG 1000x320 nm at 660 nm is $1.71 \pm 0.50 \, dB/cm$
- 90 deg, 100 μm bend WG 1000x320 nm at 660 nm is 0.21 ± 0.01 dB

MMIs average loss:

- $1x2 \text{ MMI } (\lambda = 660 \text{ nm}) \ 0.49 \pm 0.04 \text{ dB}$
- $1x4 \text{ MMI } (\lambda = 660 \text{ nm}): 5.53 \pm 0.43 \text{ dB}$
- 1x4 MMI (λ = 610 nm design, λ = 660 nm - coupled): 9.31 \pm 1.55 dB

AWG 1x8 λ_c = 610 nm characterization – design vs measurement:

- Wavelength range from 590 to 630 nm with resolution of 0.275 nm
- 2.85 nm shift in central wavelength in respect to design parameters
- Channel spacing value of 0.79 nm is consistent with simulations
- FSR derived from measured spectrum equals 9.23 nm vs 9.81 nm simulated value

AWG 1x8 λ_c = 590 nm characterization – design vs measurement:

- Wavelength range from 575 to 605 nm with resolution of 0.275 nm
- 1.67 nm shift in central wavelength in respect to design parameters
- Channel spacing value of 0.81 nm is consistent with simulations
- FSR derived from measured spectrum equals 10.23 nm vs 9.81 nm simulated value

Conclusions

- Working devices of all designed types have been developed within a single production run.
- Fast initialization of photonic platform development with current state of technology
- Identified sources of inconsistences between simulated and measured characteristics:
 - Difference between structure temperature chosen for simulations (25°C) and actual temperature of measured structures due to high power coupled into the chip
 - Geometrical offsets between design and fabricated structures
 - Refractive index in simulations not equal to actual one
- Identified sources of additional losses:
- Material chemical and structural nonuniformity
- Coupling efficiency
- Edges quality
- Defects and impurities

References

[1] Q. Wilmart et al., "A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications," Applied Sciences, vol. 9, no. 2, p. 255, Jan. 2019.

[2] P. Muñoz et al., "Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications," Sensors (Basel), vol. 17, no. 9, Sep. 2017.