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Results

Numerous models have been developed to model the performance of Bragg 

gratings and distributed-feedback (DFB). The coupled-mode theory [1] is an 

approximated formalism that has been extended in various ways to better 

approximate specific configurations. Alternatively, the characteristic-matrix 

approach [2] provides exact solutions, at the expense of larger computing 

efforts. Equally exact, but avoiding the matrix formalism, is the impedance 

method [3]. By use of these theories, frequently reflection and transmission 

curves of Bragg gratings and DFB resonators without propagation losses 

have been calculated. In some cases, either propagation losses have been 

included or light-intensity distributions at the Bragg wavelength have been 

modelled. These theories, though accurate, often prove cumbersome to 

implement.

Using a recursive method based on the circulating-field approach [4] we 

calculate the exact reflection and transmission curves and light-intensity 

distributions in DFB resonators with propagation losses.

The circulating-field approach has previously been applied to single Fabry-

Pérot resonators [5]. It can straight-forwardly be extended to the situation of a 

multiple Fabry-Pérot-resonator structure. The relationships between the 

electric fields in the double-Fabry-Pérot resonator of Figure 1 are
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Figure 1. Double Fabry-Pérot resonator with relevant electric fields E; inc: incident; refl: 

reflected; laun: launched; circ: forward-circulating; b-circ: backward-circulating; RT: 

round-trip; trans: transmitted.
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These equations can be exploited to describe the electric-field distributions of 

a structure with N consecutive Fabry-Pérot resonators. As long as there is no 

light launched from the other end of the multi-resonator structure, the electric 

fields for all resonators are given by
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By applying these equations recursively, the exact electric-field distribution 

along the grating can be found.
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Figure 2. (Top left) Reflectivity, (top right) transmissivity, and (bottom left) loss curves for 

different propagation losses (legend). (Bottom right) Reflectivity, transmissivity, and loss 

curves for a propagation loss of aloss = 26 dB/m

The output curves of a DFB grating with the design parameters of Table 1 are 

shown in Figure 2. At the resonant wavelength, the reflectivity increases and 

the transmissivity decreases significantly with increasing losses, indicating a 

loss of resonance. At low propagation losses, the highest loss occurs at the 

Bragg wavelength, but as the propagation losses increase, the highest loss 

now occur at either end of the stopband.

Figure 3. Intensity distribution versus grating position for different wavelengths: (top 

left) λ = 1.5000×10-6 m (= Bragg wavelength), (top right) λ = 1.5498×10-6 m (bottom 

left) λ = 1.5487×10-6 m, and (bottom right) λ = 1.5484e×10-6 m (= wavelength of first 

zero reflection), for different propagation losses (legend).

The intensity distribution exhibits an intensity jump as we move further away 

from the Bragg wavelength and displays oscillatory behavior at wavelengths 

far away from the Bragg wavelength, as can be seen in Figure 3.

We have presented a simple, straight-forward method, based on the 

recursive calculation of single Fabry-Pérot resonators, to calculate the exact 

intensity distributions within a DFB resonator. Uniform propagation losses 

have been considered. The resulting output and loss curves, as well as the 

intensity distribution along the resonator axis have been calculated and their 

behavior studied. These results will help predict the performance of DFB 

lasers.

Recursive circulating field approach
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Number of films 4485
Low eff. refractive 

index
1.6049715

Bragg wavelength 1.5500e-06 m Grating length 1.0818413 cm

High eff. refractive 

index
1.6079535

Phase-shift 

position
0.5409207 cm

Table 1:DFB grating parameters


