Guided-Wave, Electro-Optic Electric-Field Sensors utilizing Ti Diffused Lithium-Niobate (Ti:LiNbO₃) Optical Channel Waveguides

Hongsik Jung*

Dept. of Electronic & Electrical Convergence Engineering, Graduate School, Hongik University, Seoul, Korea *hsjung@hongik.ac.kr

OUTLINE

•This paper comprehensively reviews and compares Ti:LiNbO₃ integrated optic electric-field sensors, including the asymmetric Mach-Zehnder interferometer (MZI), 1×2 directional coupler (DC), and 1×2 Y-fed balanced-bridge Mach-Zehnder interferometer (YBB-MZI), based on the operating principles, the dc/ac electrical and optical characteristics, and electric-field measurements for each fabricated device, respectively.

MOTIVATIONS

- The sensors provide improved measurement accuracy by reducing susceptibility to electrical noise because the sensors are made of dielectric materials (lithium niobate).
- The sensors provide a non-contact measurement of electric field.
- The sensors may be placed in hostile or remote areas because optical fibers are capable of transmitting light with high fidelity in noisy environments and over long distances.
- The sensors are electrically isolated, thus providing operator instrument safety.
- The sensors are small enough to be used where space is constraint.

Electric Field Intensity(V/m)

OPTOELECTRONICS LABORATORY