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ABSTRACT

We report on the demonstration, in ambient atmospheric conditions, of an optomechanical oscillator made
of InGaP. Self-sustained oscillations directly at 3 GHz are achieved with a low optical power of 47 muW and
a linewidth narrowed down to 80 Hz. We report on injection locking experiments where the phase noise was
reduced by 20 dB with 56 mV of input power. By introducing a delay, the phase noise could be also reduced
by 20 dB via piezoelectric effect.
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1 INTRODUCTION

Radar technologies rely on the development of ultra-stable oscillators to increase the sensitivity of detection
systems. This sensitivity is linked to the phase noise of oscillators describing the spectral width of the modulated
signal. A first challenge in this field lies in the direct generation of high-frequency microwave signals in the GHz
domain and above, with ultralow phase noise. A second challenge lies in the implementation of miniaturized,
compact, transportable and integrated oscillators, especially for potential on-board applications and on-chip
signal processing.

In these applications, the frequency references are generally quartz oscillators. These provide an oscillation
whose frequency can typically reach hundred megahertz with very good performance in terms of frequency
stability and phase noise (-90 dBc/Hz for a carrier frequency of 100 MHz). To reach the gigahertz range, a
crystal oscillator is followed by frequency multiplication steps that cause an intrinsic degradation of the noise
performance of the synthesized oscillator. An alternative solution is to generate an oscillaton directly at high
frequency based on optics. In fact, optics has several advantages: low transmission losses in the optical fiber,
wide bandwidth of optoelectronic components, and high maturity of the components developed in the context of
telecommunications. In this context, the optoelectronic oscillator was developed [1]. It relies on a long optical
delay, giving high quality factors at high frequency and a phase noise of -100 dBc/Hz at 100 Hz for a carrier
frequency of 10 GHz [2]. Although these types of oscillators have been integrated on-chip [3], losses limit the
quality factor and strongly degrade the phase noise (-91 dBc/Hz at 1 MHz for a carrier frequency of 7 GHz).
However, on-chip generation of temporal delays (up to several hundreds of ns)is required for the implementation
of compact and efficient RF oscillators. Optomechanical crystals (OMC), which exploit the interaction between
light and a moving cavity, and more specifically, phononic waveguides based on the slow propagation ( 3000m/s)
of the RF signal in the acoustic domain should help build compact stable and high frequency oscillators.

2 FREE RUNNING OPTO-MECHANICAL OSCILLATOR
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Figure 1. a) SEM picture of the fabricated structure in InGaP and modelling of the b) electromagnetic and c) displacement field of the
bichromatic cavity. d) Fit of the normalized RF spectrum with the Voigt function.



The design of the one dimensional cavity ( Figure 1a) is based on the concept of the bichromatic lattice [4].
It consists of a suspended beam made of GalnP, patterned with a line of holes with fixed period a and, on the
sides, half-ellipses, with period a’ = 0.98a. On one side, some holes and teeth are removed in order to couple
light in the cavity and taper the loaded quality factor. This cavity sustains an optical mode (Figure 1b) and a
high frequency mechanical breathing mode (Figure 1c) which are co-localized and are coupled together. The
measured optical intrinsic quality factor, limited by fabrication disorder, is equal to 3.10° and the fundamental
mechanical breathing mode ocillates at 2.93 GHz. By probing the optical resonance with a tunable laser and
analyzing the light coming back from the cavity, a lecture of the mechanical movement of the cavity is achieved.
Moreover, an exchange of energy between the mechanical mode and the optical mode can compensate the losses
of the mechanical mode leading to self sustained oscillations [5]. To obtain a mechanical spectrum (Figure 1d),
the light coming from the cavity is analyzed with a photodiode and the generated electrical signal is sent to an
Electric Spectrum Analyzer. We observe self-sustained oscillations with a threashold optical on-chip power of
47 pW and a narrowing of the Lorentzian linewidth from 1.2 MHz to 80 Hz for an on-chip power of 53 pW
(Figure 1d)[6].

3 INJECTION LOCKING EXPERIMENT WITH LOW AC POWER

In the following work, the design of the OMC is slightly different and inspired from [7]. Light is injected in
the sample via a taper and the OMC can be actuated thanks to capacitive gold electrodes (3a). The fundamental
optical mode is at 1593.12 nm and its quality factor is equal to 160 000. The mechanical mode of interest is
a beam wave mode (inset of Figure 3a) which frequency is equal to 21.5 MHz. The quality factor at room
temperature and atmospheric pressure is equal to 1316 & 153 (corresponding linewidth : 15 + 2 kHz) .

c % J
free running ) Tunable L

63mv laser
10mv

M

Oscilloscope

10" 102 10% 0% 10% 108
frequency (Hz)

Figure 2. a) SEM image in false colors of the sample (OMC in blue, injection taper in red, gold electrodes in yellow with simulated
displacement of the mode of interest with Finite Element Method implemented in Comsol (inset). b) Phase noise spectral density in a free
running configuration or with injected RF signal at various input AC powers.

In the experiment shown in Figure 2c), we inject an AC voltage on the electrodes at a frequency of 21.5
MHz 4+ 10 kHz and analyze the short-term stability of the locked oscillator by measuring the phase noise.
The phase noise is the power spectral density of the fluctuations of the phase of the RF signal. To compute it,
the RF signal generated by the photodiode is transfered to the time domain with an oscilloscope and the time
trace is numerically processed. In a similar experiment in [8], an improvement of the phase noise of 20 dB
was obtained for a DC voltage of 50V and an AC voltage of 400 mV generated by a RF generator. Here, for a
frequency offset ranging between -5 kHz and 5 kHz, the OMC is locked to the RF trigger and the mechanical
frequency is tuned over 10 kHz. In this region, the phase noise is also locked to the phase noise of the RF
generator and experiences an improvement of 20 dB with 53 mV and no DC input.

4 STABILIZATION OF THE OSCILLATION USING A FEEDBACK LOOP

The set-up used here is shown in Figure 3b). The back reflected light from this sample is injected into a
fiber delay line of a few kilometers. The signal detected by the photodiode (PD) is injected on the electrodes
to provide a feedback on the OMC. A feedback loop on a free running optomechanical oscillator was already
proposed in the literature [9]. Here, we introduce a fiber delay which acts as a filter and decreases noise in the
oscillator. The phase noise (Figure 3c) is measured and experiences an improvement of 20 dBc/Hz at 1kHz as
the delay in the loop is increased compared to the case where there is no fiber delay in the feedback loop.

5 CONCLUSION

In this work, we have proposed a new design for optomechanical crystals and shown that this device can go
into mechanical self-sustained oscillations. We have also achieved locking of an optomechanical oscillator to
an external RF generator via the piezoelectric effect. Finally, we made a feedback loop on an optomechanical
oscillator including a fiber delay and shown that a decrease of the phase noise of 20dB was possible. Future
work is aimed at repeating this feedback loop experiment in the GHz range, integrating the delay thanks to a
phononic waveguide and synchornizing several oscillators.
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Figure 3. a) Set-up b) Phase noise measurements for different delay lengths.
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