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Photonic integrated circuits (PICs) based on a high-index-contrast waveguide have 
paved a pathway to large-scale integration for photonics in the past ten years. Similar to 
Si photonics, we have investigated III-V CMOS photonics platform based on III-V on 
insulator (III-V-OI) wafer as shown in Fig. 1(a) [1]. We are able to fabricate ultrasmall 
InP PICs owing to the high-index contrast between III-V layers and SiO2 buried oxide 
(BOX).  Like Si-on-insulator (SOI) wafers, III-V-OI wafers can be fabricated by using direct 
wafer bonding [2]. Thus, we have demonstrated various passive components based on 
InGaAsP strip/rib waveguides including micro bends [2], arrayed waveguide gratings [2], 
and grating couplers [3]. Active components including modulators/switches [4], laser 
didoes (LDs) [4, 5], photodetectors [6, 7], and variable optical attenuators [8] have also 
been reported so far. 

While the III-V-OI structure provides significant impact on device miniaturization for InP 
photonics, its low thermal conductivity is one of the drawbacks particularly for LDs. 
When free carriers are injected into an InP-based waveguide on the III-V-OI wafer, heat 
generated by current injection hardly dissipates through the thick SiO2 where the 
thermal conductivity is quite low. Thus, the maximum power emitted from a single LD is 
limited to a few mW when its cavity length is approximately 100 m [4]. Moreover, the 
poor thermal dissipation restricts the density of active devices on a single chip.  

In this paper, we propose to use a SiC BOX instead of SiO2 as shown in Fig. 1(b). Since the 
thermal conductivity of SiC is more than 100 times greater than that of SiO2, we expect 
that the heat dissipation can be improved drastically by introducing a III-V on SiC wafer. 
On the other hand, the medium refractive index contrast between III-Vs and SiC arises 
concern about device miniaturization. Here we numerically analyze an InGaAsP 
waveguide on SiC in terms of bend loss and heat dissipation for feasibility study. 

 

 

Fig. 1. Schematic of InGaAsP rib waveguide on (a) conventional III-V on insulator wafer 
and (b) III-V on SiC wafer proposed in this paper. 
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First, we evaluated the propagation loss of a 90 bend using 3D FD-TD simulation. Figure 
2(a) is a comparison of bend loss of a Si strip waveguide on SiO2 and InGaAsP strip 
waveguide on SiC as a function of the bend radius. While the medium index contrast of 
the InGaAsP on SiC waveguide resulted in the larger bend loss than that of the Si 
waveguide with the small bend radius, the difference in bend loss was negligible when 
the bend radius was greater than 7 m, which is sufficient for large scale integration in 
most of PICs.  Then, we analyzed the heat dissipation in the III-V on SiO2/Si and III-V on 
SiC wafers as shown in Fig. 2(b). It was found that the increase in the device temperature 
of the III-V on SiC was 30 times smaller than that of the III-V on SiO2/Si.  Thus, the III-V 
on SiC platform enables large scale integration and high-power operation simultaneously. 

 

Fig. 2. (a) Bend loss of InGaAsP strip waveguide on SiC and Si strip waveguide on SiO2 and 
(b) device temperature with injected power into III-V rib waveguide on SiO2 and SiC. 
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