High speed germanium and silicon optoelectronic devices

L. Vivien1, D. Marris-Morini1, L. Virot1,2,3, D. Perez-Galacho1, P. Damas1, G. Rasigade1, J-M. Hartmann2, E. Cassan1, P. Crozat1, S. Olivier2, C. Baudot1, F. Boeuf3, J-M. Fédéli2

1Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS UMR 8622, Bât. 220, 91405 Orsay, France; 2ST Microelectronics, 850 rue Jean Monnet 38920 Crolles, France 3CEA, LETI, Minatec Campus 17 rue des Martyrs, 38054 Grenoble cedex 9 France 4Alcatel-Lucent Bell Lab France, Nozay, France

*laurent.vivien@u-psud.fr

Abstract: Silicon photonics has generated a strong interest for the development of high-speed optical transceivers. The co-integration of photonics and electronics in the same circuit will allow a strong reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip. In this paper, we will present recent results on 40Gbit/s optical modulators based on carrier depletion effect and germanium photodetectors integrated in silicon on insulator (SOI) waveguides.

Short-link optical communications including communications in datacentre and in integrated circuits are considered as the main application for silicon photonics [1]. For this purpose, numerous studies on the development of optoelectronic devices have been performed including III-V on silicon laser [2], germanium laser [3], electro-refraction modulators based on the carrier depletion [4-7], electro-absorption modulators based on Franz Keldysh effect [8] and quantum confined stark effect [9,10] and germanium photo-detectors [11-13].

In this paper, we present a 40Gbit/s silicon modulator based on carrier depletion in lateral pn junction and a 40Gbit/s lateral pin germanium photodetector integrated in a Silicon-On-Insulator (SOI) waveguide. Both optoelectronic devices have been separately fabricated in a 300-mm Complementary Metal Oxide Semiconductor (CMOS) pilot line. The use of such a technological platform opens the route towards high volume production for optical interconnects applications. Furthermore, the use of a 300 mm CMOS platform enables the access of state of the art technological including immersion deep-UV lithography, leading to sub-50-nm resolution.

Silicon modulators: Carrier depletion effect in lateral pn diode was used to induce phase variation in silicon waveguide. Intensity variation was obtained by inserting this diode in both arms of a 950µm long Mach-Zehnder interferometer. A schematic view of the phase shifter cross-sections is shown in Fig 1a. The waveguide geometry was: 400 nm wide and 220 nm thick silicon rib waveguides. The etching depth was 120 nm. The characterization were performed for TE polarization in the 1.55µm telecom wavelength range. A modulation efficiency VLS of 2.2 V.cm was achieved and a -3 dB cut-off frequency as high as 26 GHz was demonstrated. Finally, a 40 Gbit/s eye diagram of MZ modulator is reported in Fig 1b. Extinction ratio of 7.8 dB was obtained for insertion loss as low as 4 dB.

Fig. 1: (a) Schematic view of lateral pn diode; (b) 40Gbit/s eye diagram at a wavelength of 1.55µm
Germanium photodetectors: A lateral pin Ge photodiodes integrated in silicon waveguide was used for high-speed detection (fig.2) [13]. The doping levels of both p and n doped regions were 1.10^{19} cm$^{-3}$ to ensure good contact resistances. The intrinsic region width of the pin diode was 700 nm, enabling high speed operation as well as high responsivity. Under a reverse bias of 1V, dark current was as low as 6nA. Under illumination, photo-generated current were collected with a responsivity higher than 0.5 A/W. -3 dB cut-off frequency higher than 50GHz under zero bias was achieved as well as a 40Gbit/s data transmission.

In conclusion, both Si modulator and Ge photodetector exhibited 40Gbit/s operation with competitive characteristics. A point to point 40Gbit/s optical link including one modulator chip and one photodetector chip, both connected with an optical fibre has been demonstrated [14]. The obtained overall optical loss was lower than 18dB including 4 dB losses per coupler (i.e. 12 dB for light coupling), waveguide propagation (<1dB) and 5dB insertion loss from the optical modulator.

References
8. Ning-Ning Feng, Shirong Liao, Daizeng Feng, Xin Wang, Po Dong, Hong Liang, Cheng-Chih Kung, Wei Qian, Yong Liu, Joan Fong, Roshanak Shafiiha, Ying Luo, Jack Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, "Design and fabrication of 3μm silicon-on-insulator waveguide integrated Ge electro-absorption modulator," Opt. Express 19, 8715-8720 (2011)