Cs$^+$ ion exchange channel waveguides on RbTiOPO$_4$

Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)
Universitat Rovira i Virgili (URV), Campus Sescelades, c/Marcel·lí Domingo, s/n
Tarragona 43007, Spain. *rosam.sole@urv.cat

G. Lifante,
Departamento de Física de Materiales C-IV,
Universidad Autónoma de Madrid,
28049 Madrid, Spain.

Abstract—In this paper, RTP channel waveguides fabricated by the Cs$^+$ exchange method are presented for the first time. The losses were estimated being around 1.5 dB/cm. The Second Harmonic Generation was also demonstrated obtaining green conversion at 1133 nm.

Keywords- RbTiOPO$_4$, Laser lithography, Cs$^+$ exchange waveguides, Near Field Pattern, Second Harmonic Generation.

I. INTRODUCTION

The crystals of the KTiOPO$_4$ (KTP) family have an advantageous set of material properties that make them attractive as nonlinear optical elements in optical frequency conversion devices. Their high nonlinearity, high laser damage threshold, low photorefractive damage susceptibility and wide wavelength, angular and temperature acceptance bandwidth, make them particularly useful for short wavelength generation [1-5].

RbTiOPO$_4$ (RTP) is a crystal of the KTP family that presents an extra advantage in front of KTP. It can be doped with laser active ions with higher coefficient of distribution than KTP, with the possibility to obtain a self-frequency doubling (SFD) material.

In addition to the advantages mentioned above, recently, electric-field poling at room temperature of RTP was demonstrated [6]. Initial studies indicate that the effective nonlinearity in Periodical Poling RTP (PPRTP) crystals is comparable to that of PPKTP crystals.

For all of this, the study of the possibilities of Cs$^+$ ion exchange on RTP for creating waveguide channels is interesting. This study can be considered as the first step to optimize the Cs$^+$ ion exchange in RTP for future applications in integrated photonics.

II. CREATION OF CHANNELS

A. Ti channel pattern on the RTP substrate

The RTP crystals used for obtaining substrates were grown by the Top Seeded Solution Growth (TSSG) method. These crystals were cut in plate-shape substrates perpendicular to the c crystallographic direction.

The Ti-mask pattern on the substrate was created in two steps. First, a glass mask was fabricated using a Heidlerberg Instruments DWL 66 fs laser lithography equipment. After that, the fabricated mask was applied on the substrate using a MG 1410 mask aligner of conventional lithography.

For both steps the procedure was the same. First, a Ti RF-sputtering at 200 W was used, obtaining a film of 100 nm thickness. Initial studies indicate that the effective nonlinearity in Periodical Poling RTP (PPRTP) crystals is comparable to that of PPKTP crystals.

For all of this, the study of the possibilities of Cs$^+$ ion exchange on RTP for creating waveguide channels is interesting. This study can be considered as the first step to optimize the Cs$^+$ ion exchange in RTP for future applications in integrated photonics.
B. Cs’ exchange

The RTP substrates with Ti channel patterns were used for Cs’ exchange. The orientation of the substrates was perpendicular to the c crystallographic direction, because this plane (a-b) is interesting since contains the non-critical phase matching type-II SHG directions for ytterbium laser emission wavelength range (from 985 to 1118 nm).

The Cs’ diffusion was carried out in a crucible filled with 25 g of CsNO3 at 425 ºC. The sample was immersed 6 mm below the surface of the melt in a horizontal way, stirred at 40 rpm and maintained in these conditions during 2 h.

III. CHARACTERIZATION

A. Near Field Pattern and Transmission Losses

A CCD camera was used to obtain the near field pattern of the channel waveguides. The modes were exited using objective microscopes and a He-Ne laser emitting at a wavelength of 632 nm and a Ti:Saphire emitting at a wavelength of 972 nm. As an example, figure 2 shows the near field pattern of the TM01, TM11 and TM00 modes at a wavelength of 972 nm.

To estimate the scattered losses, a modified simple transmission method was used. Modified means that we took into account some corrections, such as Fresnel losses, the mismatch between the spot of the laser and the area of the channel and finally the losses due to the transmission of the microscope objectives. The upper limit of the transmission losses was 1.5 dB/cm.

B. Second Harmonic Generation experiments

In order to check the Second Harmonic Generation (SHG) inside the channel waveguides, a pulsed laser beam from an OPO was coupled into the channel waveguides. In this case, an achromatic half-plate was placed between the laser source and the sample at an angle of 22.5 ° to ensure the type II SHG. The guided green light obtained exclusively inside the channel was collected with a CCD camera, and it is shown in figure 3. This figure shows the type II SHG obtained using the 11 µm width channel. The pumping wavelength was 1133 nm, and the green light obtained had a wavelength of 566.5 nm.

ACKNOWLEDGMENTS

This work was supported by the Spanish Government under projects TEC2010-21574-C02-01/02, MAT2011-29255-C02-02, P109/90527, and the Catalan Government under project 2009SGR235. J. Cugat thanks the Spanish Government for the FPI fellowship BES-2009-024190

REFERENCES