Noise and resolution in IO interferometric sensing
Hugo J.W.M. Hoekstra, Paul V. Lambeck, Ton M. Koster and Henri P. Uranus
IOMS group, MESA Research Institute, University of Twente; e-mail: h.j.w.m.hoekstra@ewi.utwente.nl

Abstract: The paper presents a general theory for sensing devices, relating noise and device parameters to resolution of modal index changes. The theory is applied to optimise the length of a few integrated optics sensing devices, being a Mach-Zehnder interferometers and two Fabry-Perot implementations. The results enable the determination of the maximum attainable resolution, and show the crucial importance of loss.

Introduction
Integrated optics (IO) refractometric sensors are suitable candidates for the accurate detection of parameters like index changes, layer thickness changes and displacements. The advantages of such sensors are the following:
- Diffractionless propagation,
- The possibility for in-situ detection,
- The possibility for compact integration of all kind of functions, and also of
- Multi-sensing arrays for multi-parameter detection,
- The possibility for sensor set-ups that can not or hardly be realized with classical optics components.

Related to the latter item we note that indeed a large number of different typically IO sensing devices have been proposed and realized, based on for example mode coupling [1], modal field changes [2], grated waveguides (WGs) [3], photonic crystals [4] or surface plasmon resonance (SPR) [5,6]. In addition quite a number of IO implementations of classical optics instruments have been studied in detail, like Mach-Zehnder [7], Young [8,9] and Fabry-Perot interferometers [10,11], abbreviated by MZIs, YIs and FPIs, respectively. An overview can be found in [12].

It is the aim of this paper to present a theoretical frame work describing the relation between device parameters, including propagation loss, and modal index resolution, in the presence of detection noise. For parameter reduction it appears to be convenient to introduce the so-called normalized specific resolution (NSR). The presented theory is used for parameter optimization of a number of IO implementations of classical optics devices, being a balanced MZI, a symmetric and an asymmetric FPI. The crucial role of modal propagation loss for the attainable resolution will be shown. The paper ends with conclusions.

Effect of noise on the effective index resolution
We consider sensing set-ups in which the change of the modal index \(N \), which results from an index change in the sensing section is derived from the measured transmittance, \(T \). \(T \) is measured as a function of some scanning variable \(s \), which varies in time with a modulation frequency. Such a variable could be the angle of incidence in SPR, the modulation voltage applied in both branches of an MZI [7], a spatial coordinate along which the power distribution is monitored, in a YI [8,9], or the wavelength in an FPI. The advantages of utilizing such a scanning variable is that large amount of data points at one scan enable to correct for drift, being defined as the effect of disturbing factors with frequencies appreciably lower than the modulation frequency and reduces the effects of noise (frequencies appreciably higher than the modulation frequency) in the output power by fitting the response curve. On fitting the analytical expression of the response curve (in terms of \(s \) and the modal index \(N \)) should be known, by theoretical or experimental means, except possibly for a few adjustable parameters (next to \(N \)).

In the paper we will focus on two types of noise:
1. noise which is proportional to the output power, such as noise resulting from fluctuations in source power, noise introduced by mechanically unstable parts of the device like fiber to chip couplers or noise corresponding to scattered light in the output signal.
2. noise of which the value is independent of the output power such as detector dark current noise.

Hence, the assumed noise in the output power, \(P_{\text{out}} \), is given by:
\[\delta P_{\text{out}} = \delta P_{\text{out}} + \delta P_{\text{dark}}. \] (1)
The first term at the right hand side of equation 1 is proportional to \(P_{\text{out}} \), which may consist of contributions from both functional output and re-captured stray light. The second term at the right hand side of equation 1 denotes noise related to the dark current, which is assumed to be independent of the output power. The first term in the above is usually the largest unless the output power is relatively low, in for example devices with large losses.

Rewriting equation 1 in terms of the dimensionless quantity transmittance defined by
\[T = \frac{P_{\text{out}}}{\bar{P}_{\text{in}}}, \]
with \(\bar{P}_{\text{in}} \) the time-averaged input power, it follows:
\[\delta T_{\text{total}} = \delta T + \delta \bar{T} = (\delta P_{\text{out}} + \delta P_{\text{dark}})/\bar{P}_{\text{in}}. \] (2)

In the below normal (Gaussian) distributions of the noise around zero is assumed, with standard deviations of \(T \sigma_t \) and \(\sigma_t \), corresponding to the terms \(\delta T \) and \(\delta \bar{T} \), respectively, in equation 2. Note that
\(\tilde{\sigma}_r\) decreases if \(P_s\) increases. In most practical situations things can be arranged such that \(\tilde{\sigma}_r \ll \sigma_r\).

In case that inaccuracy in the scanning parameter plays a relevant role (which should of course possibly be avoided) a term \(\delta T^* = (\partial T / \partial \alpha) \delta \alpha\) has to be added to equation 2. In the below it is assumed that the accuracy of the set-up is such that its effect on the modal index resolution can be neglected, as well as effects of the drift.

The measured transmittance on varying \(s\) is given by:

\[
T_{m,j} = T_{c,j} + \delta T_{c,j}.
\]

where \(T_c\) indicates the correct curve, corresponding to a measurement with zero noise, \(\delta T\) denotes the noise and the subscripts \(l\) indicate the sampling points corresponding to \(s\). The total number of data points is \(Q\). In the below it is assumed that, from the measurements, only the modal index, \(N\), has to be obtained. In practical situations generally more parameters have to be determined, in order to correct for drift, in for example laser power. It can be made plausible that these additional fitting parameters hardly affect the error in the fitting of \(N\).

For the obtained fitted response curve, \(T_f\), the following holds:

\[
T_{f,j} = T_{c,j} + \left(\frac{\partial T_{c,j}}{\partial N_f}\right) \Delta N_f
\]

where \(\Delta N_f\) is the error as a result of noise. The fitting procedure is assumed to consist of minimizing the following function of \(N_f\):

\[
F(N_f) = \sum_{i=1}^{Q} \left(T_m - T_{f,i}\right)^2.
\]

Equation 5 can be re-written by substitution of equations 3 and 4, leading to:

\[
F = \sum_{i=1}^{Q} \left[\delta T - \left(\frac{\partial T_{c,i}}{\partial N_f}\right) \Delta N_f\right]^2.
\]

The minimum of \(F\) as a function of \(N_f\) follows from:

\[
F'(N_f) = \sum_{i=1}^{Q} \left(\frac{\partial T_{c,i}}{\partial N_f}\right) \Delta N_f - \sum_{i=1}^{Q} \left(\frac{\partial T_{c,i}}{\partial N_f}\right) N_f = 0.
\]

From equation (7) it follows (omitting the subscripts \(c\) and \(f\) in the derivatives, for simplicity):

\[
\Delta N_f = \frac{\sum_{i=1}^{Q} \left(\partial T_{c,i} / \partial N_f\right) \Delta T_{c,i}}{\sum_{i=1}^{Q} \left(\partial T_{c,i} / \partial N_f\right)^2}.
\]

For an ensemble of such \(N_f\) determinations the standard deviation is given by:

\[
\sigma_N = \sqrt{\sum_{i=1}^{Q} \left(\sigma_r^2 + \tilde{\sigma}_r^2\right) \left(\partial T_{c,i} / \partial N_f\right)^2} / \sum_{i=1}^{Q} \left(\partial T_{c,i} / \partial N_f\right)^2.
\]

Here we have used equation 2 and repeatedly the fact that the resulting standard deviation on adding two stochastic quantities is given by the square root of the sum of the two squared standard deviations involved.

Neglecting the effect of variations in the terms under the summations in equation 9 one can state roughly that the resulting standard deviation is proportional to \(1/\sqrt{Q}\), and that on adding data points the value of \(\sigma_N\) is always reduced, even if \(|\partial T / \partial N|\) is small. It is also clear from equation 9 that in general the inclusion of data corresponding to large values of \(|\partial T / \partial N|\) will lead to a strong decrease in the standard deviation. Note that the standard deviation \(\sigma_N\) does not depend implicitly on the scanning variable \(s\). The advantage of using a scanning variable lies mainly in the fact that data points with large \(|\partial T / \partial N|\) values are part of the response curve.

Using equation 9 we can now define the modal index resolution quantitatively by \(\rho = 1/\sigma_N\).

Device optimization for a number of integrated optics sensing devices

In this section the optimization of a few IO sensing devices will be discussed. The considered devices are a balanced, modulated MZI, a symmetric and a-symmetric FP-cavity. A general approach to optimize the resolution of these devices is presented. It is assumed that only functional device output is captured by the detector (i.e., no stray light), propagation loss is taken into account and, for simplicity, only a single data point, corresponding to the maximum value of \(|\partial T / \partial N|\), is assumed in the expressions for the modal index resolution. The true resolution can be determined roughly from it by multiplication with \(\sqrt{Q}\), with \(Q\) the number of sampling points.

In the balanced MZI it is assumed that the loss in both branches is equal. The transmittance of the device is given by:

\[
T_{MZI} = 0.5[1 + \cos(\varphi_N + \varphi_s)e^{-\alpha L}],
\]

with \(\alpha = 2k_N/\pi m_w\), \(m_w\) being the imaginary part of the modal index, \(\varphi_N = k_0(N - N_r)L\), with \(k_0\) the wavenumber, \(N_r\) the modal index of the reference branch, and \(L\) is the length of the sensing section.

The phase shift \(\varphi_s\) is due to electro-optic modulation (see inset of figure 1), and can for example be varied between 0 and \(2\pi\). In the above we neglected the assumed small losses in splitting and modulation sections. With equation 9, and using a single data point (at \(\varphi_N + \varphi_s = \pi / 2\)) it follows:

\[
\sigma_N = \frac{1}{k_0 L} \sqrt{\sigma_r^2 + (2\tilde{\sigma}_r^2) e^{2\alpha L}}.
\]

In the below we will introduce the so-called normalized specific resolution (NSR), \(\eta\), defined via:

\[
\rho(1/\sigma_r) = \eta k_0 e^{2\alpha L}.
\]

It can be shown that \(\eta\), which is device specific, depends generally only on the normalized length, \(\alpha L\) (rather than on both \(\alpha\) and \(L\)), other device parameters (if any; like reflectance in a FP cavity), the ratio
\(\sigma_r / \bar{\sigma}_r \) and the used data points of the response curve.

From equation 11 it follows that minimum of \(\sigma_y \), as a function of the device length, occurs at a normalized length \(aL_{\text{opt}} \), defined by:

\[
(\sigma_r / \bar{\sigma}_r)^2 = 4(aL_{\text{opt}} - 1)e^{2aL_{\text{opt}}},
\]

(13)

leading, after substitution into equation 11, to

\[
\sigma_y = \frac{a \sigma_r}{k_0 \eta_{\text{opt}}}, \quad \eta_{\text{opt}} = \sqrt{aL_{\text{opt}}(aL_{\text{opt}} - 1)}. \tag{14}
\]

In figure 1 plots as a function of \(\sigma_r / \bar{\sigma}_r \) are given of \(aL_{\text{opt}} \), obtained from equation 13 by taking the inverse function (Matlab function \text{lambertw}) the NSR, \(\eta_{\text{opt}} \), according to equation 14, and the transmittance (for the considered single data point).

For large \(\sigma_r / \bar{\sigma}_r \) values the exponent in equation 13 dominates, i.e., \(aL_{\text{opt}} \gg 1 \), and the optimum length can be approximated as follows:

\[
aL_{\text{opt}} = \ln \left(\frac{\sigma_r}{2\sigma_r \sqrt{aL_{\text{opt}} - 1}} \right) \approx \ln \left(\frac{\sigma_r}{2\sigma_r} \right). \tag{15}
\]

From the above and equation 13 it follows:

\[
\eta = \sqrt{aL_{\text{opt}}(aL_{\text{opt}} - 1)} \approx aL_{\text{opt}} \approx \ln[\sigma_r/(2\sigma_r)], \tag{16}
\]

where use was made of the fact that \(aL_{\text{opt}} \gg 1 \).

The transmittance of a symmetric FPI is given by:

\[
T_{\text{FP}} = \frac{(1 - R)^2 e^{-2L}}{(1 - R')^2 (1 + F' \sin^2 \phi_{N,\lambda})}, \tag{17}
\]

with \(L \) the cavity length, \(\phi_{N,\lambda} = k_0LN \), \(R \) the modal reflectance at the end-faces, \(R' = R \exp(-\alpha L) \) and \(F' = 4R'/(1 - R')^2 \). It is assumed in the above that there is no power loss at the end-faces, which are both assumed to be equal. Without losing generality, it is assumed that the wavelength is the scanning variable. Note that the above expression applies equally well to a ring resonator, with a circumference of \(2L \), coupled symmetrically to two WGs (see inset of figure 2).

Device optimization has been done numerically in the following way. It is assumed, for the moment, that noise due to the dark current can be neglected, i.e., the term with \(\bar{\sigma}_r \) in equation 9 is assumed to vanish. From the results presented below it appears that things can be arranged such that it plays only a minor role for the obtainable resolution in both symmetric and asymmetric FPIs. For a given reflectance, \(R \), the value of \(\phi_{N,\lambda} \), for which \(\partial T / \partial N \) has a maximum, is determined numerically using equation 17. Next, the normalized optimum device length, \(aL_{\text{opt}} \), has been calculated numerically by maximizing the NSR, \(\eta_{\text{opt}} \), with the Matlab \text{fminsearch}-function. The resulting values of \(aL_{\text{opt}} \), \(\eta_{\text{opt}} \) and the transmittance, \(T \), as functions of the reflectance are given in figure 2.

The modal transmittance of the considered asymmetric FP cavity, with one fully reflecting end facet, is given by:

\[
T_{\text{FP}} = \frac{R - 2r \cos(2\phi_{N,\lambda})e^{-\alpha L} + e^{2\alpha L}}{1 - 2r \cos(2\phi_{N,\lambda})e^{-\alpha L} + Re^{2\alpha L}}, \tag{18}
\]

where \(L \) is the cavity length, \(\phi_{N,\lambda} = k_0LN \), \(\alpha = 2k_0N_{\text{in}} \), \(R \) the corresponding reflectance at the input of the device and \(r \) is the corresponding reflection coefficient. Proceeding as above for the symmetric FP cavity, also assuming that there is no dark current noise and a single data point (corresponding to the maximum of \(\partial T / \partial N \)), the parameters \(aL_{\text{opt}} \), \(\eta_{\text{opt}} \) and \(T \) have been determined numerically as a
function of the reflectance. The result is given in figure 3.

Note that the considered structure is functionally equivalent to a ring resonator, coupled to a single WG (see inset of figure 3).

Considering the graphs of the three considered devices the following main conclusions can be drawn:

- the length-optimized NSR, \(\eta_{\text{opt}} \), for a MZI is determined by the ratio \(\sigma_T / \tilde{\sigma}_T \), and can take on large values if this ratio is large, whereas

- its value is limited in both symmetric and asymmetric FPI to values of \(\eta_{\text{opt}} \sim 1 \) and 3, respectively.

- In the considered FPIs the effect of dark current noise is relatively small if \(\sigma_T / \tilde{\sigma}_T \gtrsim 100 \) and \(T \gtrsim 0.01 \) (for example), as can be seen with equation 9. The latter leads to the requirement \(R \lesssim 0.9 \) for the symmetric FPI (see figure 2).

The length-optimized resolution can be calculated from the presented \(\eta_{\text{opt}} \) curves with equation 12.

Note, that, quite general, the absorption \(\alpha \) plays a crucial role for this quantity.

Concluding remarks

The paper presents theory of the relation between the resolution for modal index changes and noise and device parameters for a number of IO sensing devices, assuming a scanning variable, like the wavelength. The theory is applied on a balanced MZI, and a symmetric and asymmetric FPI, to calculate the length-optimised so-called normalised specific device resolution (NSR), \(\eta_{\text{opt}} \), assuming that only a single data point of the response curve is used in the measurement. The NSR depends on device parameters, but not explicitly on \(\alpha \), the power loss coefficient, and \(k_0 \), the wavenumber. From the NSR the resolution for modal index changes, \(\rho \), can be calculated according to

\[
\rho(=1/\sigma_{\Delta n}) = \eta k_0 / (\alpha \sigma_T),
\]

with \(\sigma_T \) the standard deviation in the transmittance and \(\sigma_{\Delta n} \) is the resulting standard deviation in the effective index.

From the results the following can be concluded:

- Loss is a crucial factor for the maximum attainable device resolution,

- The maximum attainable NSR of the balanced MZI can be large and limited by the presence of so-called dark current noise, whereas,

- Its value is always limited to \(\eta \sim 1 \) for considered FPIs.

As mentioned, for simplicity only a single data point of the device response curves was considered in the presented results. But, it is expected that the general features of the presented graphs, and also the main conclusions hold as well in case of considering a (much) larger number of data points (leading normally to higher resolution).

The presented results may be of help to select an IO sensing device for a certain application, although other properties may also be quite relevant, such as:

- Compactness,

- Sensitivity for temperature fluctuations,

- Robustness against technological errors, and

- Accuracy and range of the scanning variable.

Acknowledgments

Part of presented work has been performed in the framework of STW Technology Foundation project TOE.6596 and a SenterNovem project.

References

5. J. Homola et al, Biosensors, no. 37, p. 26, 2005
7. R.G. Heideman et al, Sensors and Actuators B no. 61, p. 100, 1999