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Abstract: The transition matrix describes the probabili-
ties of transitions of a system between different sets of
states. In this presentation, we demonstrate that tech-
niques similar to the multicanonical method can be em-
ployed to find the elements of the transition matrix between
pairs of highly unlikely states in an optical communication
system. This result is then applied to determine the prob-
ability distribution of outage times resulting from polariza-
tion mode delay (PMD).

Introduction

While biased sampling procedures, most notably the
multicanonical or importance sampling techniques,
are now frequently employed to investigate static
system quantities such as the probability distribution
functions (pdf) of the differential group delay (DGD)
or of the eye opening penalty.[1-4], these methods
have not been applied to dynamic system behavior
such as the average time spent in an outage. Here we
adapt the transition matrix methods of statistical
mechanics[5-7] to dynamic communications prob-
lems (it should be noted that a transition matrix
approach was earlier applied to analyze the error of
static PMD calculations in [8]).

Multicanonical Method

Since our transition matrix discussion generalizes our
previous work on biased sampling methods, we first
review the foundations of the multicanonical method.
A randomly fluctuating physical system can
generally be described by a vector of N, system
observables, E, each of which is affected by N,
stochastically varying parameters a. For example, in
this paper E are suitably defined moments of a pulse
that has passed through a series of polarization
controllers to which fluctuating voltages specified by
a, are applied. Typically, the average value of a
function p(E) in regions of sample space with an
extremely small probability of occurrence must be
determined without recourse to an unrealistically

large number of samples, a;.

Accordingly, the multicanonical method biases the
sample space. in such a manner that, if p(E)
represents the pdf of E, the sampling probability after
many iterations coincides with the inverse of the pdf
and the sampling becomes uniform in the system
observables E. In the standard implementation, the
physically accessible region of E is partitioned into
N histogram bins centered at E,, withm =1, 2, ... N.
Next, the elements of a histogram that will store the
unnormalized pdf, p°(E.,), and a second histogram
that holds temporary values, H(E.), are both

initialized to unity. The starting value of E is
computed from a randomly chosen set of system
variables a®.  These system variables are then
randomly perturbed according to a™" = a®" + &a,
leading to new observables E™". To insure that the
computation spends more time in states with small
values of p(E), this transition is accepted with
probability min(1, p°(E*)/p%(E™")), in which case
a®™ is set to a"™"; otherwise a®" is unchanged for the
following iteration. In either case, the histogram
element, H(E,), for the new value of E® is
incremented by unity. After this process is repeated
M times, an improved estimate, p'(E), of p(E) is
obtained after the bias in the system variables during
the iteration is removed according to p'(E) = cp(E)
H(E). In the following iteration p'(E) replaces p°(E),
H(E) is reset to unity and the above process is
repeated.

Transition Matrices

The multicanonical method can be employed to
determine the relative probability for transitions
between each pair of system variables even for
highly unlikely pairs of states. In particular, for every
accepted or rejected transition from a state in the n:th
to a state in the m:th histogram bin obtained during a
multicanonical  calculation, the corresponding
element, 7., of an wunbiased but unnormalized
transition matrix, T is incremented by unity. At any
point in the calculation, the rows of T, can be
normalized to unity, yielding an estimate of the
standard transition matrix T. We can also construct a
biased multicanonical transition matrix, B, such that
By gives the likelihood of a transition from the n:th
to the m:th state in the multicanonical procedure..
Here Ty, typically at the end of the last iteration, is
multiplied by the multicanonical acceptance
probability, min(1, pL(E,,);’pL(Em)) after which each
row of this matrix is normalized to unity. A further
matrix R, with R;= Tym/Bum, can be constructed that
specifies the ratio of the probability of an unbiased
transition from state # to state m to the probability of
this transition ftransition probability in the
multicanonical method.

An alternative method for biasing transitions is to
formulate the acceptance rule directly from an
estimate of 7 that is dynamically updated as the
calculation step.[6] Here, starting from initial values
T.m=1, transitions between two states E,"" and E,**
generated by a™" = a™ + 8a, are accepted with
probability min(1,7;,,/T,) while again incrementing



Tom O T, by unity for accepted and rejected
transitions, respectively. We have slightly modified
this technique by fixing our estimate of the transition
matrix after every M transitions and employing this
estimate for the next M transitions; since this ensures
that for most transitions, the detailed balance
condition, P(E,) Ty = P(Ey) Ty for each n and m,
where P(E,) denotes the probability of finding the
system in the n:ith histogram bin, is satisfied.
However, we still impose detailed balance at the end
of the calculation to avoid unphysical complex
eigenvalues of the transition matrix. Since P(E) is
identified below with the eigenvector of the transition
matrix with unit eigenvalue.,, we compute the
P(E,) associated with the transition matrix T®=T
and iteratively improve T according to
T = (PO(E) e + POED) Ton®) / 2PO(Ey).

Time-Dependent Problems

Time-dependent systems can be simulated in a
similar manner to time-independent systems if the
magnitude of the random perturbation, 8a, is adjusted
such that the average change in the observables,
[E™" — E™|, coincides with a measured change over
some time interval, Az .

To sample transitions between physically unlikely
states, paths can be composed of randomly generated
transitions between states that observe the transition
probabilities stored in the biased transition matrix or,
equivalently, the multicanonical acceptance rule can
be applied in conjunction with the unbiased transition
matrix probabilities.  In either case, repeated
evaluation of the system observables from the system
parameters is avoided. Each path from the state m to
the state » over the intermediate states 1, 2, ... k must
however be assigned the weight w =R ,,;Ry3...R;, in
the resulting histogram.. Of course, the unbiased
transition matrix can be employed directly if only the
high probability region of the sample space is of
interest.

The time evolution of a system property can also be
derived from the eigenvalues and eigenvectors of T.
The eigenvector with unit eigenvalue here yields the
probability distribution function for finding the
system in a given state while the distribution
functions associated with the other eigenvectors
instead decay with time constants proportional to
their eigenvalues as the system tends towards its
equilibrium distribution..

Outage Times

To illustrate the above considerations, we compute
the pdf of the PMD-induced outage durations in a
single mode optical fiber system. Our calculation
employs a fiber model consisting of 100
concatenated birefringent fiber segments each of
which poseses a DGD of 2.17ps. These are separated
by polarization rotators that can be adjusted to
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generate any desired rotation of the incoming
polarization vector ; on the Poincaré sphere. For
certain mutual orientations of these polarization
vectors, the ratio of the emulator DGD to the average
DGD of the fiber segment will exceed a certain value
associated with a system outage.. The time interval
over which the DGD exceeds this value is termed the
outage time.

Identifying the vector of system variables a with the
2/-dimensional relative angles between the
birefringence vectors of successive sections, and the
system observables, E, with the DGD, the outage
time distribution is normally determined by
performing many time steps a"“=a®" + 8a, and
recording the length of time for which the system
remains in the outage region for each outage.
However, in our calculations, the Markov chain can
be directly modeled by sampling transitions
according to the probabilities stored in the unbiased
or biased transition matrices (in the latter case,
however, the histogram for the time duration of each
system path must be incremented by an appropriate
weighting factor).

Alternatively, we can take as the initial state of the
system a distribution equal to P(E,) for » in the in
non-outage region and zero elsewhere, corresponding
to the average distribution of states that have not yet
entered the outage region. The time evolution of this
state is then modeled by repeatedly multiplying by
the transition matrix. After the k:th step, the sum of
the histogram values that fall outside the outage
region can be identified with the probability that the
system returns to a non-outage state within the time
interval (k-1)Ar<t<kAt The values of the system
vector in the non-outage region are then set to zero
before the (k+1):st time step. The time evolution can
also be determined by noting that since the state
vector of paths that are restricted to the outage region
is repeatedly multiplied by the submatrix formed
from the matrix entries for the outage states, the
eigenvalues of this submatrix yield the decay rates
corresponding to the distributions given by the
associated eigenvectors. The desired outage time
distributions can therefore be found through
projection of the distribution after one time step onto
these states.

Numerical Results

To illustrate the above methods, in Fig. 1 we show
the pdf of the outage times, for both DGD>21,,, and
DGD>31,,, outage conditions. The circles in this
figure refer to an unbiased Markov chain calculation
that recorded the outage times observed during 10°
time steps (fewer than 10,000 samples were recorded

in the outage region for the 37,,,. outage condition).
The solid line displays the result after constructing an
unbiased transition matrix from the accepted and
rejected transitions of three 5x10° sample multican-



onical iterations and then generating a biased Markov
chain from the the multicanonical acceptance rule
together with appropriate weight factors for the
paths. Replacing the multicanonical acceptance rule
by a rule derived from the ratio of transition matrix
elements was found to decrease the sampling of the
tail of the pdf for a fixed number of realizations.
Finally, successive multiplications of the initial state
vector by the unbiased transition matrix obtained
after two 2x10° sample multicanonical iterations
yielded the dashed line; as was also computed from
the eigenvalues and eigenfunctions of the outage
state submatrix. Although the biased transition matrix
clearly samples a far wider range of states than the
standard procedure, some accuracy is necessarily
sacrificed since the standard method preserves all
information about the system variable correlations in
different regions of the system state space.

Finally, Fig. 2 displays the eigenvectors correspond-
ing to the three largest eigenvalues of the transition
matrix determined with three 5x10° multicanonical
iterations. The insert contains the magnitude of the
50 largest eigenvalues. Note that the eigenvector
with unit eigenvalue (solid line) yields the pdf of the
DGD for infinitely long fiber samples while the other
eigenvectors can be used to compute the DGD at
finite fiber lengths.
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Fig. 1. The pdf of the outage durations associated with an optical
fiber emulator for thresholds of 2T, and 3T,y . The results of the
standard method with 10° samples, the multicanonical reweighing
method with 3 iterations of 5x10° samples and repeated multiplica-
tion of the initial state vector by an unbiased transition matrix
obtained after two 2x10° sample multicanonical iterations. are
denoted by circles, solid and dashed lines, respectively.
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Fig. 2. The first three (solid, dashed and dashed-dotted lines,
respectively) transition matrix eigenvector computed after 3 multi-
canonical iterations of 5x10° samples. The inset contains the
magnitude of the first 50 eigenvalues.

Conclusions

That time-dependent effects in communication and
other physical systems can be rapidly and accurately
modeled, even in very low probability regions by
transition matrix methods can significantly impact
future communication system simulations. We
therefore hope to shortly extend our results to several
challenging system calculations.
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